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Abstract 

This paper considers estimation and inference in panel vector autoregressions (PVARs) with 
fixed effects when the time dimension of the panel is finite, and the cross-sectional dimension 
is large. A Maximum Likelihood (ML) estimator based .on a transformed. likelihood function 
is proposed and shown to be consistent and asymptotically normally distributed. irrespective of 
the unit root and cointegrating properties of the underlying PVAR model. The transformed. 
likelihood framework is also used to derive unit root and cointegration tests in panels with short 
time dimension; these tests have the attractive feature that they are based. on standard chi­
square and normal distributed statistics. Examining Generalized Method of Moments (GMM) 
estimation as an alternative to our proposed. ML estimator, it is shown that conventional GMM 
estimators based on standard orthogonality conditions break down if the underlying time series 
contain unit roots. Also, the implementation of extended GMM estimators making use of 
variants of homosked.asticity and stationarity restrictions as suggested in the literature in a 
univariate context is subject to difficulties. Monte Carlo evidence is adduced suggesting that 
the ML estimator and parameter hypothesis and cointegration tests based on it perform well in 
small sample; this is in marked contrast to the small sample performance of the G MM estimators. 
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1 Introduction 

Vector autoregressive models (VARs), whether postulated as reduced. form econometric models or 

built to examine long-run restrictions suggested by economic theory while allowing for unrestricted 

short-run dynamics have become a widely used modelling tool in economics (for example, Hsiao, 

1979,1982, Sims, 1980, King, Plosser, Stock and Watson, 1991, Pesaran and Shin, 1999). It is well 

known, though, that time-series inference on VARs critically depends on whether the underlying 

processes are (trend) stationary or integrated, or cointegrated, and, if they are cointegrated., the 

rank of cointegration (for example, Sims, Stock, and Watson, 1990, Phillips, 1991, Johansen, 1995, 

and Pesaran, Shin, and Smith, 2000). 

It is also widely recognized. that panel data have the attractive feature that often a large number 

of cross-sectional observations are available over time. The application of VARs to panel data is 

often hampered by two issues, however: (i) The time dimension of the panel may be short. (ii) 

Cross-sectional heterogeneity is present. The first issue gives raise to the problem of modeling 

the initial observations (for example, Anderson and Hsiao, 1981, 1982, Bhargava and Sargan, 

1983, Blundell and Smith, 1991, and Nerlove, 1999). The second issue gives raise to the classical 

incidental parameters problem, Neyman and Scott (1948), if the cross-sectional heterogeneity is 

modelled through fixed effects. Both issues can lead to the breakdown of the classical Maximum 

Likelihood. (ML) estimator. 

Because of the difficulties with implementing likelihood based inference, Generalized Method. 

of Moments (GMM) estimators have been popular for the estimation of (predominantly univari· 

ate) dynamic panel data models (for example, Hoitz·Eakin, Newey, and Rosen, 1988, Arellano and 

Bond, 1991, Ahn and Schmidt, 1995, and Arellano and Bover, 1995) . However, conventional GMM 

estimators based on standard orthogonality conditions have proved. to have rather poor finite sam­

ple properties in the case of autoregressive panel data models with near unit roots (for example, 

Blundell and Bond, 1998).1 In this paper we show that for Panel VARs (PVARs). conventional 

GMM estimators in fact break down altogether if the underlying time series contain unit roots. 

We then investigate the possibility of obtaining GMM estimators that could be applied to PVAR 

models when the unit root properties of the model are not known a priori. To this end we augment 

the standard orthogonality conditions with homoskedasticity and stationarity implied moment con­

ditions proposed initially by Ahn and Schmidt (1995) and Arellano and Bover (1995) in the context 

of univariate dynamic panel data models. Unfortunately, the implementation of extended GMM 

estimators incorporating variants of these adclitional moment conditions is subject to difficulties. 

IMonte Carlo experiments reported in Blundell and Bond (1998), Hsiao, Pesaran, and Tahmisdoglu (1999), and 
in Section 10 below sugge5t that tbe finite sample pwpertie5 of conventional GNlM e5timators of autoregressive panel 
data models are poor even in the case of models with moderately large sized roots. Conventional GMM e5timation 
of autoregressive panel data models thus tends to be problematic for a wide range of applio;;ations. 
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Given the problems with GMM estimation, in this paper we propose a likelihood based estima­

tion and inference approach. We derive a transformed. unconditional likelihood function for PVARs 
with fixed. effects that does not involve incidental parameters and provides a model-consistent way 

of formulating the distribution of the initial observations. We show that the ML estimator associ­

ated with our transformed likelihood function always exists and is (as the cross-sectional dimension 

of the panel, N, tends to infinity) consistent and asymptotically normally distributed, irrespective 

of whether the underlying time series are (trend) stationary, integrated of order one, 1(1), or 1(1) 
and cointegrated.. We also suggest a consistent Minimum Distance (MD) estimator derived from 

the transformed likelihood framework to be used as the initial estimator for the ML iterations. 

Furthermore, we consider hypothesis testing based on the transformed. likelihood function. In par­

ticular, Wald- and likelihood ratio-based panel testing procedures for the presence of unit roots 

and for the cointegration rank are derived . •  An attractive feature of these tests is that they are 

based. on standard chi-square and normal distrib�ted statistics. We also show how our likelihood 

based estimation and inference approach can be extended to PVARs where under the long-run 

forcing restriction a subset of the variables is modelled in terms of the remaining variables. Finally, 

some Monte Carlo evidence regarding the small sample biases and root mean square errors of the 

conventional GMM, the MD, and the ML estimators is adduced. The Monte Carlo simulations are 

also employed. to investigate the size and power properties of parameter hypothesis tests based on 

the conventional GMM and the ML estimators, and to investigate the size and power properties of 

cointegration rank tests based on the ML estimator. The Monte Carlo evidence suggests that the 

ML estimator in small sample performs remarkably well, clearly outperforming the conventional 

GMM estimators, and that the various M� estimator based hypothesis tests tend to have good 

size and power properties. The Monte Carlo simulations also further document difficulties with the 

implementation of extended GMM estimation. 

The remainder of this paper is organized as follows: Section 2 introduces the PVAR under 

fixed effects. Section 3 discusses how the incidental parameters problem arising in the estima­

tion of this model may be resolved. by working with transformed model equations, and provides 

a general expression for the unconditional joint probability distribution of the first differences of 

the observations. Section 4 considers GMM estimation based on the transformed model equations, 

showing that conventional GMM estimators break down in the presence of unit roots, and demon­

strating that the use of homosked.asticity and stationarity implied. moment conditions to construct 

an extended. GMM estimator is subject to problems of its own. Section 5 presents the proposed 

ML estimator, showing that it is consistent and asymptotically normally distributed irrespective 

of whether the underlying time series are (trend) stationary, pure 1(1), or 1(1) and cointegrated. 

Section 6 derives a MD estimator that we use as the initial estimator for the ML iterations. Section 

7 discusses the estimation of long-run relations within the PVAR framework, and examines model 
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identification when the variance-covariance matrix entering the transformed likelihood function is 
treated as unrestricted. Hypothesis testing on the basis of the transformed likelihood function is 
discussed in Section 8, which in particular proposes new tests for unit roots and cointegration rank 
in panels with short time dime�sion. Section 9 considers the issue of how to carry out inference 
in conditional models where a subset of the variables in the PVAR is modelled in terms of the 
remaining variables. In Section 10, Monte Carlo simulation results are reported assessing the finite 
sample performance of the GMM, MD, and ML estimators. Section 11 concludes and provides 
some suggestions for future research. The extension of formulae derived in the body of the paper 
for first-order PVARs to �th order PVARs is described in an appendix. 

2 A PVAR Under Fixed Effects 

Let Wit be an m x 1 vector of random variables for the i-th cross-sectional unit at time t. We 
assume that the Wit'S are generated by the following PVAR model of order p, PVAR(P): 

<l> (L) (Wi< - 1', - "It) = 'i<, i= 1,2, ... ,N, (2.1) 

where 
p 

<l>(L)=Im-L<l>jU, (2.2) 
j=-I 

�j, j = 1,2, ... , p, denote m xm matrices of slope coefficients, 1-', is an m x I vector of fixed effects,2 
; is an m x 1 vector providing the common deterministic trends/drifts across cross-sectional units,3 

E:i! is an m x 1 vector of disturbances, 1m denotes the identity matrix of dimension m x m, and L 

the lag operator, LWi! == Wi,t_l. We make the following assumptions: 

(AI) The disturbance vectors E:jt are independently and identically distributed across i and over t 

with E (eit) = Omx 1 and Var (eid = fl, fl being a positive definite matrix, 

(A 1) is a common assumption in the dynamic panel data literature as reviewed by Arellano and 
Honore (2000). The coefficients making up the vectors J.i.i, i = 1,2, . .. ,N, and ;. and the matrices 
�i> j = 1, 2, ... ,p, and fl are assumed to be unknown. 

(A2) The time dimension of the panel is finite with T > p, and the available observations are WiO, 

:lAs a variety of fixed effects specifications have been considered in the literature, it may be worthwhile to spell 

out what W'I! mean by fixed effects in this paper. We view the individual-specific effec15, p." as fixed effects if they 

are generated by a probability distribution function where the number of parameters characteri:ting this function is 

allowed to increase at the same rate ¥ the number of cross-sectional observations in the panel. As will be seen below, 

for our proposed �'IL estimator to be valid, no further assumptions on the ,.,.,'5 are needed. 
3The common deterministic trend/drift 1't in (2.1) could be replaced by more general time-specific effects 1', 

without adding any conceptual problems for estimation and inference. 
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(A3) The. roots of the determinantal equation 

(2.3) 

are either equal to unity or fall outside the unit circle. 

As our interest in this paper concerns (trend-) stationary, pure unit root, and cointegrated 

PVAR models, the PVAR(P) model (2.1) ensures that if i = Omxl, then the model intercepts are 

restricted as otherwise {Wit} would exhibit no trend growth across i if all roots of the determinantal 

equation (2.3) fell outside the unit circle, and {Wit} (or some of its linear combinations) would 

exhibit differential trend growth across i if one or more roots of the determinantal equation (2.3) 

were equal to unity. Similarly, the PVAR(P) model (2.1) ensures that if i #- Omxl, then the trend 

coefficients are restricted. as otherwise {Wit} (or some of its linear combinations) would exhibit 

quadratic trends if one or more roots of the determinantal equation (2.3) were equal to unity.4 

A number of well known time-series specifications can be obtained from the PVAR(P) model 

(2.1) as special cases. We set out some of these for the reader's convenience. 

Case 1: Stationary PVAR with fixed effects 

Let i = Omxl. and let all roots of the determinantal equation (2.3) fall outside the unit circle. 

Then (2.1) be<:omes 

i = 1,2, ... ,N, (2.4) 

where bjQ = -lll-'i. with 

(2.5) 

Case 2: 7rend-stationary PVAR with fixed effect8 

Let all roots of the determinantal equation (2.3) fall outside the unit circle and; #- Omxl. Then 

(2.1) becomes 

i = 1.2, ... IN, (2.6) 

where ato = -lll-'i + (T + ll);, with 

p 
r = -n+ 2>�;' (2.7) 

;=1 

4See Pesaran, Shin, and Smith (2000) for a further discussion of this issue in a time-series context. It may also be 

"WOrth noting that while we do DOt pursue the possibility of incidentaJ. deterministic trends/drift!, "'Y;, in this paper, 

these could be accommodated by working with the unconditional joint probability distribution function of the second 

cillferences of the observations. This will become clear in Section 3 below. 
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and where a1 = -Ur. 
Case 3: PVAR with unit roots (but non-wintegrnted) and fixed effects 

In this case E�=l if?; = 1m. Then (2.1) becomes 

if? (L) 6. Wit = -II·, + E':t, i=1,2, ... ,N, 

where l:l :=1 - L, 

p-l 
4>. (L) = 1= - L: 4>jU, 

;=1 

with if?; = - (1m - E{::1 if?[), j = 1,2, .. .  ,p - 1, and �here II·= - (1m - L:f:� �;). 
Case i: COintegrated PVAR with. fixed effects 

(2.8) 

(2.9) 

In the case where some (but not all) roots of the determinantal equation (2.3) are equal to unity, 

rank (II) = r, a < r < m, and {2.1} may be rewritten in the form of a panel vector error correction 

model as 

where 

p-l 
6.w.:t = f,- (p - 1) II, + II{i,t_p + l:r;l:lw.:,t_j + E':t, 

;=1 

; 

i = 1, 2, ... ,N, 

rj = -1m + Lif?" 
•• 1 

j=I,2, .. ,p-1. 

(2.10) 

(2.11) 

For ease of exposition, in what follows we shall motivate our remaining assumptions to be made 

for estimation and inference on the PVAR(P) model (2.1) first for the case where p = 1, and then 

generalize our discussion to the case where p � 1. Under p = I, the PVAR model (2.1) reduces to 

i = 1,2, . . .  , N. (2.12) 

When the time dimension of the panel, T, is finite, in estimating (2.12) there arises a classical 

incidental parameters problem as the number of fixed effects vectors, I'i' to be estimated increases 

proportionately to the cross-sectional dimension of the panel, and there arises the problem of the 

initialization of {Wit}. Our formulation of the initial observation in the sample, WiO, makes use of 

the fact that the PVAR(l) model in {ie, defined by 

(2.13) 

does not involve the fixed effects, I'i' although it is still subject to the initial value problem: 

i = 1,2, ... ,N. (2.14) 
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Suppose that tbe PVAR(I) model (2.12) started at time t = -M, M � O. Then from (2.14) we 

obtain 

t = -M + 1,-M +2, ... ,T. (2.15) 

In practice where the time-series properties of {Eit} are not known a priori, to characterize the 

distribution of {Eit};=-M+I we need to distinguish between three main cases; namely {Eit} being 

covariance stationary, pure 1(1), or 1(1) and cointegrated. 

Suppose that the initial deviations, Ei,-M, are independently and identically distributed across 
i with mean vector zero and a finite variance-covariance matrix. In the case where all roots of the 

determinantal equation (2.3) fall outside the unit circle, it is then clear from (2.15) and (AI) that 

the variance-covariance matrix of eit will also be finite over the sample period, t = 0,1, . . .  ,T, 

irrespective of whether 

(i) {Eit} has been in operation for a long period of time, namely M _ 00, and the process 

has reached covariance stationarity, so that EC(it) = Omxl and VarC(it) = L�o�nq>il, t = 

0,1, ... ,T, 

or 

(ii) {(it} has started in a finite period in the past not too far back from t = 0. 

We shall pursue possibility (i) in this paper;5 and note that under (i) (2.15) becomes 

� 
(it = L �ei,t-;, ;=0 

(2.16) 

In the case where all roots of the determinantal equation (2.3) are equal to unity, to ensure that 

the variance.covariance matrix of (it is finite over the sample period, t = 0, 1, . . . • T, {(it} must 

have started in a finite period in the past. It follows that (2.15) in the pure unit root case becomes 

t+M-1 
(it = (i,-M + L €;,t-;. 

;:::0 
t = -M+l,-M+2, . . .  ,T. (2.17) 

It remains to consider the intermediate case where some (but not all) roots of the determinantal 

equation (2.3) are equal to unity, and the remaining ones fall outside the unit circle. For this case, 

it is helpful to work with the error correction representation of the PVAR(l) model (2.12) given by 

t=-M+l,-M+2, .. . ,T, (2.18) 

where 

(2.19) 

�See Hsiao, Pesaran, and Tahmisciogiu (1999) for an analysis (in a univariate context) of possibility (ii). 
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As is well known from the cointegration literature, if rank (II) = r, r = 1,2, ... ,m - 1, then there 

exist m x r matrices 0: and {3 such that 

II = o:{3' 
, (2.20) 

where 0: and {3 have full column rank, and are commonly referred to as the error correction 

coefficients and the cointegrating vectors, respectively. The following assumption is standard in 

the cointegration literature:6 

(A4) If rank (II) = r, r = 1,2, ... ,m - 1, then o.'.i.{3.1 is of rank m - r, where 0..1 and /3.1 are 

m x (m - r) matrices of full column mnk such that 0:'0:.1 = Orx(m_r) and /3'/3.1 = Orx{m-r). 

Under Assumptions (A3) and (A4) the elements of eit are either 1(0) or 1( 1). To ensure that 

the variance-covariance matrix of Eit is finite over the sample period, t = 0,1, ... ,T, the m - r 

pure unit root components in {Eit} must have started in a finite period in the past. To separate 

the pure unit root components in {Eit} from the covariance-stationary ones, it will be useful to 

introduce the matrix C defined as 

(2.21) 

It is well known from the cointegration literature that under rank (II) = r, r = 0,1, ... , m, the 

matrix C has rank m - r, and there are m - r pure unit root components in Eit, t = -M + 1, -M + 
2, . . . , T. 7 For consistency with (2.16), the r cointegrating relations f3' eil, t = -M + 1, -M + 

2, ... , T, must have reached covariance stationarity. The following final assumption ensures both 

that the variance-covariance matrix of eit is finite over the sample period, and that the cointegrating 

relations {1Eit have reached covariance stationarity, irrespective of the number of pure unit root 

components in {{it}. 
(AS) The initial deviations {i,-M are given by 

00 
ei,-M = L (q,i - C) €i,-M-j + COi, 

j=O 
(2.22) 

where E:;t, i = 1,2, ... ,N; t :::; T, are independently and identically distributed across i and over t, 

and Oi, i = 1,2, ... ,N, are independently and identically distributed across i, with 

;,J being a positive definite matrix. 

6See, f9c example, Johansen (1995, Ch. 4). 

7See, for example, Johansen (1995, Ch. 4). 

and Var 
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Substituting (2.22) hack into (2.15), and noting from the definition of C that rrc = Om, and 

thus C = 4lC, we have that 

t = -M + 1, -M + 2, ... ,T, and therefore also 

� 
{3'eit = {3' L �gi.e-j, 

j=O 

(2.24) 

(2.25) 

E(f3'{,,) = Omxl, and Var(f3'{,,) = f3'(L:j:.o�n�')i3, t = -M+l,-M+2, . . . ,T. It is 

thus seen that (AS) indeed. implies that the cointegrating relations f3'{it have reached covariance 

stationarity, irrespective of the number of pure unit root components in {{it}. FUrthermore, in 

the case where all roots of the deterrninantal equation (2.3) fall outside the unit circle, C = Om, 
and (2.24) reduces to (2.16). In the case where all roots of (2.3) are equal to unity, C = cI> = 1m, 
and (2.24) reduces to (2.17), with {i,-M = tli. Also note from (2.24) that since {cI>i - C};':o is 

absolutely summable irrespective of the number of eigenvalues of � that are equal to unity, the 

variance-covariance matrix of {it' t = -M + 1, -M + 2, ... ,T, is finite. FUrthermore, it is worth 

noting th�t there are (m - r) (m - r + 1) /2 free parameters in the variance-covariance matrix of 
CDi, which corresponds directly to the number of pure unit root components in {{it}. Finally, 

since the pure unit root components in {{it} have started in a finite period in the past, there are m 

individual-specific intercepts present in {Wit} irrespective of whether {{it} is covariance stationary, 

pure 1(1), or 1(1) and cointegrated. 

Our initialization of the PVAR(l) model (2.12) can be readily extended to the PVAR(p) model 

(2.1) for p 2: 1. It is now assumed that 0:1. r{3.1 is of rank m - r, with 0:, 0:.1, {3, and {3.1 defined as 

before, and that the initial p deviations in the sample, namely {it, t = 0, 1, . .. ,p - 1, are given by 

eif = C· (L) €it + Cstt + CCi' i = 1,2, ... ,N; t = 0,1, . .. , p-l, (2.26) 

where SiO = Omxl, Sit = L�=l €i/, G· (L) = L:�o C;U, Co = 1m - C, C; = Cj + C;_t, j 2: 1, 

C (L) = L:j:.o C;L), C = L:j:.o C;, Co = 1m, Cl = - (lm - �Il, C; = L:f=, C;_,�" j 2: 2 

(with Cj = Om for j < 0),8 and Ci is independently distributed across i with E «i) = Omxl, 
and Var«i) = iF, IF being a positive definite matrix. It is readily verified that when p = 1, the 

specification (2.26) of the initial sample deviations is equivalent to the one implied by (AS), with 

Ci = Di + L:t�ot €;,_j, and IF = � + M (0 + 'c). The specification (2.26) again ensures that the 

8 Johansen (1995, Ch. 4) discusses �he properties of the matrix polynomials C (L) and C' (L) in some detail, and 
in particular shows that both {Cj};:'o and {C;};'-o are absolutely summable. See also Pesaran, Shin, and Smith 

(2000). 
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variance-covariance matrix of eit is finite over the sample period) t = 0, 1, . .. ,T, and that the r 
cointegrating relations f3'eit, t = 0,1, . . .  ,T, have reached covariance stationarity, irrespective of 

the number of pure unit root components in {eit}. The same processes generating the covariance­

stationary components of {eit} ;=p also generate those of {eitlf.:d, and the same processes generating 

the pure unit root components of {eit};=p also generate those of {eit}f;d. 

3 Resolving the Incidental Parameters Problem 

To overcome the incidental parameters problem due to the fixed. effects and the initial observations 

when T is finite, following the analysis in Hsiao, Pesaran, and Tahmiscioglu (1999) of a univariate 

dynamic panel data model we work with the unconditional joint probability distribution of the first 

differences 6Wil, .6.Wi2, .. ' , 6Wip,.6.wi.p+l , ... ,6WiT, which we decompose as9 

(3.1) 

To obtain the first component on the right-hand side of (3.1), namely the unconditional joint 

probability distribution of 6Wil, 6Wi2 •. . .  ,6Wip, we invoke the specification (2.26) of the initial 

deviations in the sample. Combining the covariance-stationary representations in first differences 

of the observations dated t = 1,2, ... ,p - 1 implied by (2.26) with the error correction repre­

sentation of the PVAR for t = P one obtains the unconditional joint probability distribution of 

6Wil, 6Wi2, ... ,6Wip free of the incidental parameters and initial value problems. From (2.26) it 

is readily verified that the following first-difference representation holds for t = 1,2, . . .  ,p - 1: 

t = 1,2, ... ,p -l. (3.2) 

Also, substituting for eiO from (2.26) into the error correction representation (2.10) for t = p, after 

re-arranging terms and noting that IIC = Om one obtains that 

where 

p-1 
6Wip - "I = :L:ri (6wi,P_i - "I) + 'fJip' 

i",1 

'lip = nc· (L) EiQ + eip. 

Collecting the disturbance terms in (3.2) and (3.3), 

r.:=vec[ C(L)eil' C(L)E02 • . . .  , C(L)ei,p_l, "liP ] ' 

(3.3) 

(3.4) 

(3.5) 

{lRecall that the available observations are W;o, Wil, . . •  ,W;T, irrespective of the order of the PVAR, p < T. 

9 
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we have that E(ti) = Ompx l, and Var(ti) = :E., where 

with 

and 

90 91 9, 9p-2 'iiI 
9: 90 91 9p-3 'Ii, 

:E. = (3.6) 

9�_2 9�_3 g�-4 90 Hp_l 
'Ii'l 'Ii, 

� 
91 = L CjrlCj+1 > 1 =  0, 1, ... ,p � 2; 

j=O 

'Ii, H�_l 'Ii 

'Ii, = (fcj+,nc;') II', 1 =  1, 2, ... ,p-I, 
)=0 (3.7) 

'Ii = II (f c;nci') II' + n. 
J=O 

(3.8) 

The variance-covariance matrices 9j, 1 = 0,1, ... ,p � 2, H" l = 1 ,2, . . .  ,p - I, and 'l1 under our 

assumptions are well defined irrespective of whether some or all of the roots of the determinantal 

equation (2.3), lIP (e)t = 0, are equal to unity. For the pur.e unit root case, note that II = Om, and 

thus 'l1 becomes equal to n, and 'HI becomes equal to Om, l = 1, 2, . .. ,p - 1. For the cases of trend­

stationary and cointegrated PVARs where some but not all roots of leI> (e)1 = 0 may be equal to 

unity, it should be noted that {Cj};"o as well as { c; }:O are absolutely summable. Also note that 

all elements of :E. are fully specified by IPj, j = 1,2, ... ,p, and/or n. The parameters of the distri­

bution of (;, i = 1,2, . . . ,N, do not enter E. for any r = 0, 1, ... , m. Observing that the Jacobian 

of 'the transformation from ti to (6.w:1, 6.wb, ... , 6.w:p)' is unity, Pr (6.w;1,6.wi2 •. . . • 6.w;p) 
can be derived, and is, for normally distributed errors, provided in the appendix. 

The second component on the right-hand side of (3.1), namely the conditional joint probability 

distribution of 6Wi,p+l, 6Wi,P+2,'" , 6WiT given 6.wil, 6.w;2 •. . .  ,6.wip, can be derived using the 

first differences of (2.1) for t = p+ l,p+2, . . . , T: 

P 
6.wit -"f = L CPj (6.w;,t_j - "f) + 6.eit, 

j=1 

t=p+l,p+2, .. . ,T. (3.9) 

Note that the first-differencing eliminates the fixed effects for the last T -p time-series observations 

in the paneL Collecting the disturbance terms in (3.9), 

(3.10) 

using linear projection we have that E (filti) = Cov (fi, til E;lt;, which simplifies to E (fi le;) = [ -(n'R.ed. OIXm(T-p-l) ] " where 'R. denotes the m x mp matrix formed by the last m rows of 
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Ell., where 

'll -11 

-11 211 -11 0 
EfI� = (3.11) 

0 -11 211 -11 

-11 211 

with 

'll �211 - I1SI1, (3.12) 

and S denoting the m x m matrix formed by the last m columns of R. Observing that the Jacobian 

of the transformation from fi to (.6W;
,P

+l' .6w�
,P+2'··· , .6w�T r is unity, 

can be derived, and is, for normally distributed errors, provided in the appendix. 

The unconditional joint probability distribution function of the transformed observations, .6wH, 

D..Wi2, ... ,D..Wip,D..wi,p+l, ... ,6WiT, can now be assembled as in (3.1), and in contrast to the 

probability distribution function of the untransformed model, (2.1), is not subject to the incidental 

parameters problem. Before establishing the properties of the resultant ML estimator, we shall 

consider the use of the transformed model equations (3.2), (3.3), and (3.9) for GMM estimation. 

Having discussed the difficulties with GMM estimation even after the incidental parameters problem 

has been resolved, in Section 5 we shall establish the properties of the ML estimator and discuss 

its computational implementation. 

4 GMM Estimation 

Most discussions of GMM estimation of dynamic panel data models are within a single equation 

context (for example, Arellano and Bond, 1991, Ahn and Schmidt, 1995, Arellano and Bover, 1995, 

Blundell and Bond, 1998).10 However, just like Three Stage Least Squares (3SLS) estimation of a 

system of equations can be more efficient than the single equation based Two Stage Least 8quares 

(28L8), we shall generalize GMM estimation to a systems context, and then show that if the PVAR 

contains unit roots, the conventional CMM approach using instruments that are orthogonal to the 

disturbance terms of the model equations breaks down. We then investigate if the use of variants 

lOAn exception is Holtz.Eakin, Newey, and Rosen (1988), who study a multivariate setting also, but in a. fra.mework 

different than ours. 
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of homoskedasticity and stationarity implied moment conditions as suggested. by Abo and Schmidt 

(1995) and Arellano and Bover (1995) can help resolve the issue. 

To simplify the exposition, for much of the remainder of this paper we set p = 1, and consider 

the PVAR(I) model (2.12). The counterparts of the transformed model equations (3.3) and (3.9) 

for the PVAR{l) model (2.12) are given byll 

where 1]il is given by (3.4) for p = 1, namely 

and 

� 
1]11 =£";1- (1m -�) L:�£"i,-;, 

;=0 

.6Wit -7 = �(.6wi,t-l -7) +b.£it, , t = 2, 3, ... ,T. 

Also, from (4.1) it follows that for the PVAR(l) model (2.12) it holds that 

where � as before is given by (3,8), which in the case where p = 1 can be written as 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

The appendix provides many of the results derived in the remainder of the paper for p = 1 for the 

case where p > 1. 

4,1 Conventional GMM Estimation 

The conventional GMM estimator, developed for (trend.) stationary models, employs instruments 

that are orthogonal to the model disturbances. For the first-differenced PVAR(I) model (4. 3), such 

instruments are given by a constant and levels of the dependent variables, Wit, lagged two or more 

periods (which are predetermined). The standard orthogonality conditions are thus given by 

where 

q;t = ( 1, �o' w�l' -------------------
IlNote that (3.2) need only be considered in the case where p > 1. 

- 1 8-

t = 2,3, . . .  ,T, 

(4.6) 

W�,t-2 ) '
. (4.7) 



To obtain the conventional GMM estimator using the moment conditions (4.6), note that the 

first-differenced PVAR(I) model (4.3) can in stacked form be written as 

(4.8) 

i = 1,2, ... ,N, where 

(4.9) 

R; = (p" 'T-l), (4.10) 

(4.11) 

and £.7'-1 denotes a (T - 1) x 1 vector of ones. 

Pre-multiplying (4.8) by the (mTj2 + 1) (T -1) x (T -1) block-diagonal instrumental variable 

matrix Qi, 

qi2 O(m+l)xl O(m+l)xl 
O{2m+l)xl qi3 O(2m+1)xl o 

Qi= O(3m+l)x1 O(3m+1)xl qi4 (4.12) 

0 
one obtains 

(4.13) 

the transpose of which in vectorized form becomes 

(Q, 0 1m) vee (S;) = (Q,R; 0 1m)' + (Q, 0 1m) vee (E;) , (4.14) 

where>. = vee (J\'). The conventional GMM estimator of oX is obtained by minimizing 

[t (Q, 0 1m) vee (S;) - (Q,R; 0 1m),] ' [t (Qi 0 1m))"; (Q, 0Im)'] -' 

. [t (Q, 0 1m) vee (S;) - (Q,R; 0 1m),] , (4.15) 
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where 

211 -11 
-11 211 -11 0 

� = (4.16) 

0 -11 211 -11 
-11 211 

The moment conditions relevant to the estimation of n are given by 

(4.17) 

for t =: 2,3, ... ,T. Also note that in the case of a trend-stationary PVAR, upon estimation of 81 
from (4.15), -y may be consistently estimated as 

(4.\8) 

The conventional GMM estimator is consistent if all eigenvalues of � fall inside the unit circle. 
but breaks down if some eigenvalues-of � are equal to unity.I2 Note that a necessary condition for 
the GMM estimator (4.15) to exist is that rank (N-l L�l QiR.) = m+ 1 as N _ 00. In the case 

where � = 1m, rank (N-1 E!l Qi�) as N _ 00 is less than m + 1, however. This is because 
when � = 1m, .6.Wit = -y + Eil. and Wit = WiO + -yt + Sit, with Sit as before given by Sit = E:=I Ei,!, 

and thus it follows that for t = 2,3, . . . ,T, j = 0, 1, . . .  , t  -2, as N _ 00 

N N � L .6.Wi,t_lW�, = � L b + Ei,t-d (WiO + -yj + Si,)' .E. -y (WiO + -yj)' 
i .. 1 i;;::1 

(4.19) 

(where.E. denotes convergence in probability), which is of rank one. In other words, when � = 1m, 
the elements of qit are not legitimate instruments. For the PVAR(P} model (2.1) (with p > 1), 

although N-1 E!l.6.wi,t-IW:" t = 2,3 •. . .  ,T, j = 0, 1 , . . .  ,t-2, may be of fuU rank as N _ 00, 

� t q" [ (6W •. t_l - "f)', (6W •. t_2 - "f)', . . . , (6w',t_ p - "f)' 1 ' 
i_I 

(4.20) 

12Note that if there are no restrictions on the detenninistic trend terms, that is, the PVAR(l) model ill written as 
(1m - 4>L) w" = IJ.; + 1't + Ei<, then when the roots of II ... - 4>,,\ = a are equal to unity, minimUing (4.15) can yield 
consistent estimates of � if m = 1, but not for m > 1. Note that if there are no restrictions on the deterministic trend 
terms, then when the roots of II ... - �"I = a are equal to unity, the model contains both a linear and a quadratic 
deterministic trend, whereas it only contains a linear deterministic trend when all roots of II ... - �"I "" a fall outside 
the unit circle. 
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t = 1,2, . .. ,T, will have deficient rank as N ....... 00. To see this, note from (2.8) that if L�=l 4'j = 
1m, then (2.1) may be written as 

�. (£) (t.w;, -1') � e;" 

with w· (L) given by (2.9). Post-multiplying (4.20) by ( 1m, -wi, -w2, 

follows that for t = 2,3, ... ,T, as N ....... 00 

1 N I P N L qit£i,t_l ....... °lm{t-l)+1)xm· 
1=1 

(4.21) 

(4.22) 

In the event that the PVAR(P) model (2.1) contains unit roots, the conventional GMM estimator 

breaks down. 

4.2 Conventional GMM Estimation Incorporating Initial Conditions 

In the case of models with non-zero deterministic trends the conventional GMM moment condi­

tions (4.6) can for estimation of the trend coefficients (;) be augmented with additional moment 

conditions based on (4.1), namely 

(4.23) 

Stacking (4.1) and (4.3), we have 

5, = R.;A + E" (4.24) 

i = 1,2,  ... ,N, where 

5, = ( 6.wil, S�)', (4.25) 

(4.26) 

and 

(4.27) 

Pre-multiplying (4.24) by the [m (T - 1) /2 + 1J TxT block-diagonal instrumental variable matrix 

Q;, 
qil 0 0 

O(m+l)xl  q':2 O(m+l)xl o 
Q.:= O(2m+l)xl O(2m+l)xl qi3 (4.28) 

0 qiT 

15 
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and vectorizing the transpose of the resultant expression one obtains 

(4.29) 

where � = vee (k). The conventional GMM estimator of � is obtained. by minimizing 

[t. (Qi ®1m) vee (5;) - (QiR. ®Im):\] ' [t. (Qi ®1m) E (Qi®1m)f 
. [t. (Qi ® 1m) vee (5;) - (QiR.®1mF] , (4.30) 

where 

� -Il 
-Il 21l -Il 0 

E = (4.31) 

0 -Il 21l -Il 
-Il 21l 

with lit given by (4.5). The moment conditions relevant to the estimation of n are again given by 

(4.17). 

The conventional GMM estimator of W incorporating the initial conditions will be more efficient 

than the conventional GMM estimator of 4l not incorporating the initial conditions. Note, though, 

that (4}0) introduces nonlinear restrictions between 4l and '"Y. Both the conventional GMM esti­

mator of � based on (4.15) and that based on (4.30) break down if some eigenvalues of ell are equal 

to unity. 

4.3 Extended GMM Estimation Using Homoskedasticity and Stationarity Im­

plied Moment Conditions 

The above discussion shows that in the presence of unit roots the consistent estimation of the PVAR 

model requires further moment conditions. One possibility would be to augment the standard 

orthogonality conditions (4.6) and (4.23) by homoskedasticity and stationarity implied moment 

conditions as derived by Ahn and Schmidt (1995) and Arellano and Bover (1995) in the context of 

univariate dynamic panel data models. In the context of the PVAR(l) model (2.12), the Ahn and 

Schmidt (1995) homoskedasticity implied moment conditions can be written as 

t = I,2, . .  ,T-2, (4.32) 

and 

t = 1,2, ... , T-l, (4.33) 
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where 

(4.34) 

The Arellano and Bover (1995) stationarity implied moment conditions can in the context of the 

PVAR(I) model (2.12) be written as13 

t= 2,3, . . .  , T. (4.35) 

Following Ahn and Schmidt (1995), the moment conditions (4.32), (4.33), and (4.35) after removing 

duplicate information may in combined form be written as 

t = 1,2, . . . ,T-l, (4.36) 

and 

E {d" (w;, --yt)' -d;,H [W;,H -"I (t -1)1') = Om, t = 2,3, . . . • T. 
(4.37) 

Since the moment conditions (4.36) and (4.37) involve the fixed effects, I-'i. it is necessary to verify 

whether they are also applicable to the PVAR(I) model (2.12) as we have specified it. 

Noting that the counterpart of the first-difference representation (3.2) for p = 1 and t = 
1 ,2, . . .  , T  is given by 

� 
6Wit - , = €it - (1m - �) L�€i,t-j, 

j=O 

and that diT = (1m - �) JLi + €iT, (4.36) can be written as 

(4.38) 

t = 1,2,  . . .  , T - I, 
(4.39) 

which is valid under the assumption that (1m -�) I-'i and Eit, t � T -1, are uncorrelated. Note 

that this assumption does not rule out correlation between I-'i and initial disturbances, say Ei,-Mi 
if i-J.i' for example, was generated by 

i =  1,2, . . .  ,N, (4.40) 

where 9Jl; is an m x m matrix of parameters, and 1.Lj, i = 1,2, . . .  , N, is an m x 1 vector of random 

variables independently distributed across i, and also independent of Ed, t � T -1, then (1m. - �) I-'i 
and Eit, t � T - 1, would still be uncorrelated. 

13The Arellano and Bover (1995) moment conditions in the literature are referred to as stationarity implied moment 

conditions, as they may be motivated by a stationarity restriction on the cross product of the regressand and the 

fixed effects vector. 
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Turning to (4.37), noting that under (A5) {wit}i:::z:l is generated from 

_ (�M-l ) 
Wit = 1-'. + it + L (� - C) Ei,t-i + C L Ei,t-i + Ctli, i::O i=O 

(4.41) 

it is readily seen that (4.37) will be valid if I-'i and Eit, t = 1,2, . . .  , T, as well as (1m - (ll) I-'i and 

Eit, t :5 0, are uncorrelated, and (1m -(ll) E (I-'il-'D as well as (1m - �) E (l-'iuD C' exist. 

The validity of our proposed ML estimator will be unaffected by whether the assumptions 

needed for the homoskedasticity and stationarity implied moment conditions (4.36) and (4.37) 
to be valid do hold, as it will be based on the unconditional joint probability distribution of 

the transformed observations, .6wilo .6Wi2, . . .  , .6wiT, which, as seen in Section 3, does not 

involve 1-',. It should also be noted that even when the moment conditions (4.36) and (4.37) 
are valid, the variance-covariance matrix associated with these moment conditions does depend 

on the individual·specific effects 1-',. Because of this dependence, without further (homogeneity) 

restrictions on the distribution of 1-'.: it is not possible to derive the optimal weighting matrix 

associated with the homoskedasticity and stationarity implied moment conditions (4.36) and (4.37), 
and the orthogonality conditions (4.6) and (4.23). The extended GMM estimator based on a non· 

optimal weighting matrix will in general not be as efficient as our proposed ML estimator. 

To overcome the dependence of the variance--covariance matrix associated with the moment 
conditions (4.36) and (4.37) on the individual·specific effects 1-';, an alternative way of making use 

of the homoskedasticity restrictions on E,t would be to combine (4.32) with (4.6), and consider the 

moment conditions 

Note that 

t = 2,3,  . . .  ,T-2. (4.42) 

E (.6.Wit .6 E�,t+l -.6.wi,t+l .6 Ei,t+2) 
E (Wit .6 E�,t+l -Wi,t+} D. E�,t+2) -E (Wi,t_l 6. ei,t+1) + E (Wit .6 E�,t+2) , (4.43) 

and thus it is readily seen that (4.32) and (4.6) imply (4.42).14 However, the moment conditions 

(4.42) do not lead to a workable extended GMM estimator. To see this, let 

(4.44) 

and 

(4.45) 

HIt may be verified that under Assumption (AS) (4.42) is applicable for t = 1 as well. 
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Then (4.42) can be rewritten as 

E {vee [�w" L'> ,: •• +1 -�W'.'+l L'> ,: •• +,] } = E (vee [V,,(-r)l - [I� ® Z,,(-r)]} vee (<1>') . 
(4.46) 

However, it is readily seen that 

Similarly, 

plim [�f,l:!..W;t (l:!..Wit - 1')'] = plim [�t l:!..wi,t+1 (l:!..w;,t+1 - 1'),] . 
N-+QO i=l N-+oo ':=1 

Thus, the moment conditions (4.42) are of no use for the estimation of�. 

(4.47) 

(4.48) 

Another possibility of making use of the homoskedasticity restrictions would be to consider the 

second moments directly, taking account of the correlation of .6.Wi,t_l with 6eit. Using (4.1) and 

(4.3), it is readily seen that 

(4.49) 

Thus, the following moment conditions must hold: 

(4.50) 

Furthermore, using (4.3) and (4.38) it is readily seen that the following T - 2 sets of moment 

conditions must also hold: 

E { [L'>w" - "I - <1> (L'>w' •• _1 - "1)1 (L'>w' .• _l - "I)' + O} = O�. t = 3. 4  . . . . . T. 

(4.51) 

The T - 1 sets of moment conditions (4.50) and (4.51) hold regardless of the unit root and ooin­

tegrating properties of the PVAR(1) model (2.12), and could augment the standard orthogonality 

conditions (4.6) and (4.23). The standard orthogonality conditions (4.6) will not be contributing to 

the estimation of � if it happens that � = 1m, and will contribute only partially under cointegra­

tion. As some of the roots of � approach unity the relative contribution of the moment conditions 

(4.6) diminishes, and the qit'S become weak instruments in the terminology of Staiger and Stock 

(1997). 

The problem with the homosked.asticity implied. moment conditions (4.50) and (4.51) is that 

they do not imply unique solutions for �, in general. To see this, note that upon substituting (4.17) 
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into (4.50) and (4.51) to express (4.50) and (4.51) as a function of tl> alone, the resulting moment 

conditions become quadratic in tl>, and it is not clear how to choose among the multiple solutions 

of the extended GMM moment conditions, in generaL 

To construct an extended GMM estimator, let us stack the standard orthogonality conditions 

(4.6) and (4.23), and the homoskedasticity implied moment conditions (4.50) and (4.51) as 

whe<e " = (7',</>')" 

and 

with 

</> = vee (iI1) ,  

6Wil - "'(  
vee{I(6w;2 - "() - iI1 (6wn - "()I qbl 
vee {\(6W;3 - "() - iI1 (6W;2 - "()I q:') 

m(6w;, It) = vee {[(6W;T - "() - iI1 (6W;,T_l - "()I q:Tl 
veeIU;2(,,(,iI1)1 
veeIU;3(,,(,iI1)1 

veeIU;T("(,iI1)1 

2 [.6.wit - "'( - tl> (.6.wi,t_l - "'(») (.6.wi,t_l - "'()' 

+ [6w;, - "( - iI1 (6W;,'_1 - "()I [6w;, - "( - iI1 (6W;,H - "()I' , 

(4.52) 

(4.53) 

(4.54) 

(4.55) 

(4.56) 

i = 1,2, . . .  ,N.15 Using familiar results from the literature on GMM estimation developed by 

Hansen (1982) and noting that by assumption .6.w, are independently and identically distributed. 

across i, the extended GMM estimators of It can be computed by solving the following minimization 

problem: 

(4.57) 

15In our MonU! Carlo simulations in Section 10 below, we shall also consider the extended GMM estimator con­

structed by stacking the standard orthogonality conditions (4.6) and (4.23), and the homoskedasticity and stationarity 

implied moment conditions (4.36) and (4.37). 
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where 

1 N 
MN(I<) � N L m(6w, .I<). 

i=l 
(4.58) 

N 

D ( ) � .!.  ,, 8m(6w,.I<) N K. N �  8K.' , 
._ 1 

1 N 
and WN(I<) � N L m(6w,.I<)m'(6w,.I<). 

i=l (4.59) 

Finally, the moment conditions relevant to the estimation of ill and n are the same as for the 

conventional GMM estimator incorporating the initial conditions. 

It may also be noted that the solution of (4.57) with W N(K.) given in (4.59) is not as efficient as 

the extended GMM estimator replacing W N(K.) by E [W N(K.)I, that is, using a weighting matrix 

that takes into account all model restrictions.16 However, the derivation of E [WN(K.)] is not a 

trivial exercise, and will not be pursued. here. Rather, in light of the various problems with GMM 

estimation that we have discussed, we revert our attention to the unconditional joint probability 

distribution of the first differences of the observations derived in Section 3, and establish the 

properties of the ML estimator based on it. 

5 ML Estimation 

The unconditional joint probability distribution of �Wi1, �Wi2, ' "  , �Wip, �Wi,P+l" " , b.wiT was 

derived in Section 3. In this section, we again set p = 1 to simplify the exposition and facilitate 

comparison with the GMM estimators derived. in Section 4.l7 In the case where p = 1 it may be 

simpler not to invoke the decomposition (3.1), but to work directly with the unconditional joint 

probability distribution of b.wil, �Wi2, ' "  , �WiT' From (4.1) and (4.3) it readily follows that 

under the assumption that £it , t � T, are normally distributed. the unconditional joint probability 

distribution function of 

is given by 

where k = mT, 

rj = vee ( �Wil - -y, .6Wi2 - " . . . , .6wiT - ,  ) 

" See also Amemiya (1973). 

17 Once again, the appelldix discusses the more general case where p > 1. 
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(5.4) 

r/> is given by (4.53), r/> = vec (�), and E is given by (4.31), 

'Ii -f! 
-f! 2f! -f! 0 

E = 

0 -f! 2f! -f! 
-f! 2f! 

with lit given by (4.5), 

'Ii = (1m - �) (t, <JIif!<JIi') (1m - �)' + f!. 

The ML estimator of (5.2) is equivalent to finding "'I.' 4l, and 0: to maximizing the unconditional 

log·likelihood function 1 (8), 
N 

1 (8) = -�k In (2�) - � In IEI - � L (r; -H;r/» ' E-1 (r; - H;r/» , 
i=l 

(5.5) 

where 8 =  ( I', 4>', (T' ) ', with d = vech (O).18 

Under the assumption that T is finite, the likelihood function associated with 6wjt, i = 
1,2, . . . , N; t = 1,2, . . .  ,T, is well defined irrespective of the location of the eigenvalues of 41, 
and depends on a fixed number of parameters,19 We then have the following proposition: 

Proposition 5.1 Under Assumptions (AI), (A2), and {A5},20 and assuming that (} E e, where 
e i.s a compact subset of !}t3m(m+l)/2 and the true parameter vector, 8o. falls in the interior of a, 
the ML estimator associated with the likelihood function for f'j,Wit, i = 1,2,  . . .  , N; t = 1,2, . . .  ,T, 

8ML, is consistent and asymptotically normally distributed when N tends to infinity. 

Note that normality assumptions on Ed. i = 1,2, . . .  , Nj t ::; T, are not needed for large N 
asymptotics.21 

liThe appendix in (A.16) provides the unconditional log-like lihood function derived using the decomposition (3.1). 

It may be verified that the ML estimator of 9 based on (5.5) is equivaJent to the ML estimator of 8 based on (A.16) 

under p = 1. 
IOWhile in our exposition we have for simplicity not allowed for any of the roots of the determinantal equation 

(2.3) to fall irside the unit circle, the latter possibility can be readily accommodated by augmenting (AS) with the 

assumption that the explosive components in {(ill have started in a finite period in the past, with an independent 

and identical distribution across i, and that the covariance-stationary and pure unit root components in {{;oJ are 

generated by the relevant counterpart of (2.22). A note discussing this issue in further detail is available from the 

authors upon request. 

2GSee also Footnote 19. 
21For certain non-normal distributions generating {E;d, further regularity conditions may need to be verified. See, 

for example, van der Vaart (1998) for further discussion. 
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To compute the ML estimator, in the case of a (trend-) stationary PVAR it is useful to rewrite 
the infinite sum on the right-hand side of (4.5) yielding ill, and in all three cases it is useful to 
invoke an efficient scheme for the computation of the determinant and the inverse of E. To express 
ill in the case of a trend-stationary PVAR in non-recursive form, note from (4.5) that 

� 
�q.<I>' = <1>0<1>' + I: <!>i+l (1m - <1» 0 (r,. _ <1» '�+1' 

;=0 
�O<l>' + q. - 0  - (r,. - �) O (Im - �)'. 

Vectorizing (5.6) it therefore follows that 

(5.6) 

(5.7) 

where Om is a m2 x m (m + 1) /2 dimensional matrix, known as the duplication matrix, defined 
such that vec (M) = Omvech (M) for any symmetric m x m dimensional matrix M, and O!. is 
the generalized inverse of Dm.22 To compute the determinant of E, one may make use of the 
block-tridiagonal structure of E. Applying the block LD£I factorization to E, the latter may be 
factorized as23 

(5.8) 

where AD is a block-diagonal matrix with j-th diagonal block given by A£l = w-1, Agl -(20 - OA�- llo) -1 , j = 2,3, . . .  tT, and where AL = Aijl_Au, with Au being a block-subdiagonal 
matrix with all subdiagonal blocks equal to O. It then follows that 

det (�) = , 1 
[det (AL)[ det (AD) = 

det (AD) 
1 T ( Ul) 

det ('1') ;I], det AD . (5.9) 

To compute the inverse of E, one may again make use of the block-tridiagonal structure of E. An 
efficient scheme is to adapt the recursions based on Bowden's procedure in Binder and Pesaran 
(2000) to E. The inverse of E can then be computed as 

�;;1 = (T + 1 - 1) [(j _ 1) 0-1 '1' - (j -2) ImJ [Tq; - (T - l) Or1 , I ? j, 
(5.10) 

2'lIn practice, one will want to avoid computing the generalized inverse, Dt, of D", for large values of m, and 

instead determine vech (\II) from vec (\II) by selecting the appr'Opriate elements of vec (\II) through a simple element 

selection loop. In the case of a cointegrated PVAR, (I ... � - � ® <1» is singular; l' may then be computed using 

numerical reclW>ions inVOking an �ppropriate stopping rule to replace the infinite sum on the right-hand side of (4.5) 

by a finite sum. 
23For further details see, for example, Binder and Pesaran (2000),  who in the context of the solution of multivariate 

linear rational expectations models discuss the block LDU factorization, of which the block LDL' factorization is a 

special case. 
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and 

E;.I � (T + 1 - j) iT� - (T - I) fWI [(l - I) �n-I - (1 - 2) Iml , j > I, 
(5.11) 

where E
jj

l denotes the jl-th block of E-l, j, I = 1,2, . . . ,T. 
A note describing further details of the numerical algorithm we use to compute the ML estimates 

is available from the authors upon request. 

6 MD Estimation 

In this section, we suggest a MD estimator based on the transformed model equations.24 The MO 

estimator will be used as an initial estimator (or the ML iterations. 
Consider again the PVAR(l) model (2.12). Conditional on E, the ML estimator of 4> and 'Y is 

equivalent to the MD estimator that minimizes 
N 

L (ri - Hi<l» ' E-I (ri - Hi<l» , (6.1) 
ial 

where r" Hi, </>, and E are defined in (5.1), (5.3), (4.53), and (4.31), respectively. Therefore, 
conditional on "( and E, the MD estimator of � is given by 

(6.2) 

and, conditional on � and E, the MD estimator of 'Y is equal to 

'Y � (NJE-IJ'rl [tJE-1 (£\Wi - Li<l» ] , 
,01 

(6.3) 

where 

J =  ( 1m• Im - �I, Im - �I, . . .  , Im - �I ) , (6.4) 

Li = K� ® Im, and Ki = ( Omxl' .6.wil, 6Wi2, . . .  , .6.wi,T_l ) ' (6.5) 

The variance-covariance matrix E may be (block) diagonalized. as ( V

O

l 
V, � l ' UEU' � V �  

v,. 

24See Chamberlain (1984) for an early discussion of ¥.D estimation of panel data models. 
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where VI = 1m, Vj = 1Jj+lfmj = [jq;I/'n-1 - (j - 1) q;-l/'j n [(j - 1) q;1/'n-1 - (j � 2) q;-I/'j , 
j = 2, 3, . . .  ,T, and 

u =  

o 

VI U2 V3 VT 

(6.7) 

with U..It = �-1/2, UJ2 = 1111/20-1, Vj = 2Uj_l - Uj_2 = (j - 1) 1lr1/2n-1 - (j - 2) 1lI-1/2, j 
3,4, . . .  ,T.25 Therefore, one may consider the following iterative scheme to obtain the MD estima..­

tor: 

Step 1: Form initial estimates of "Y, 4), and n from the moment conditions E (6wit -'"'() = Omxl, 
t = 1,2, . . . ,T, (4.50), (4.51), and (4.17) as follow", 

�IO) 

and 

ijlO) 

1 T N 

'1(0) = TN L: L: L>. Wil, 
t=l i=1 

(6.8) 

(6.10) 

. [L>. Wil -'1(0) - �IO) ( L>. Wi,I_1 -'1(0)) J ' .  (6.11) 

It is clear from (6.10) and (6.11) that itO) needs to be computed by iterative techniques. To 

initialize the iterations, one will need to make an initial guess for rP6 

25There are alternative procedures available to achieve such a block diagona.1i�ation of E. One alternative is to 
employ the block LDL' factorization used in Section 5 to compute the determinant of E. Using AD and AL as defined 
in Section 5, we have that AD = A'ZiE{Ar.)-t, where ALI is lower triangular. 

211As was discussed in Section 4, the solution of the homoskedasticity implied moment conditions (4.50) and (4.51) 
is in generaJ not unique. But for the purpose of initializing the MD iterations in our Monte Carlo simulations reported 
in Section 10 below we found that if all elements of the initial estimate of fi were chosen sufficiently small, then the 
eigenvalues of ¥(O) computed by iterating on (6.1O) and (6.11) tend to fall inside the unit circle if the eigenvalue!! of 
4> faJl inside the unit circle. 
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Step 2: From the initial estimates of Cf>, "Y, and n transform r, into ri = V-1/2Uri, and vee (G.) 
into vec (Gi) = V-1/2Uvee (G,), and estimate � and "Y by minimizing the Ordinary Least Squares 
objective function 

N 

L (ri - Hi4» ' (ri - Hi4» ,  (6.12) 
i:1 

where Hi = Gi' ® 1m_ Numerically, this ,may be achieved in fast and accurate manner by solving 
two unit triangular equation systems each for Cf> and "Y. For example, factorizing r:�l HiE-1H, 
as 

N 
LH�E-IHi = BLBDlBi., (6.13) 
i:l 

where BL is unit lower triangular and SD diagonal (see, for example, Golub and van Loan, 1996, 
for an algorithm to achieve such a factorization), to obtain an estimate of oll, one needs to solve the 
unit upper triangular equation system 

with z being the solution to the unit lower triangular equation system 
N , BLz = L: (V-1/'UH,) (V-1/2Ur,) . 
i:} 

(6.14) 

(6.15) 

Step 3: Re-estimate n based on the revised estimates of oll and ;, using the moment condition 
(4.17). 
Step 4: Repeat Steps 2 to 3 until the estimates converge. 

The MD estimator is consistent. The consistency of 9 can be easily seen from (6.8). Therefore, 
we shall treat ; as known and consider the consistency of�. Note that 

(6.16) 

where 

(6.17) 

with "7il glven by (4.2). The numerator of the second term of (6.16) divided by N has the form 

(6.18) 
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,,'-' . 
Substituting t:::.Wit -i = wt-1 (6wu - i)+ Lj"",o � .6ei,t-j, and noting that Uj+l -2Uj +Uj_1 = 
Om, one can show that 

(6.19) 

Therefore, by a law of large numbers, (6.16) converges to Om,2xl as N _ 00. The MD estimator 

does not require normality assumptions on Ejh i = 1,2, . . .  ,N;  t :s T, to remain valid. 

Furthermore, conditional on "y and E, the MD estimator of tP is identical to the ML estimator 

of cJ> with asymptotic variance--covariance matrix given by 

(6.20) 

When E is unknown, the asymptotic variance-covariance matrices of the ML and MD estimators 

of � do not converge to (6.20) because when lagged dependent variables appear as regressors, 

the estimation of � and E is not asymptotically independent (Amemiya and Fuller, 1967). The 

asymptotic variance-covariance matrix of t�e feasible MD estimator of '*' is equal to the sum of 

(6.20) and a positive semi-definite matrix attributable to the estimation error in .E (Hsiao, Pesaran, 

and Tahmiscioglu, 1999). 

7 Estimating Long-Run Relations 

In this section we consider ML and MD estimation ofthe PVAR(l) model (2.12) when rank (IT) = r, 
r = 1, 2, . . .  , m  - 1, and there are thus r cointegrating relations present. Subtracting 6.wi,t_1 from 

both sides of (4.3) yields 

t = 2,3, . . .  , T, 

with n given by (2.19), n = - (I". - �). Combining (7.1) with (4.1), 

l:::.Wil - i  = Eil + ITL:: (IT + 1m); €i.-j, 
;=0 

we have the logarithm of the joint probability distribution function of 

as 

Nk N 1 
N 

I I 1 (9) = -T In (2.) - "2 In IEI - 2 L (5; - Hi") E- (Si - Hi") ' 
j=l 
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where (J = ( '"'1', 1r', rT )" 7r = vee (II), and Hi and E are defined by (5.3) and (4.31), respec­
tively. 

Decomposing the matrix II as. II = o.{3', where 0. and {3 as before are m x r matrices of full 
column rank, since o.{3' = o.lKIK-�' for any r x r nonsingular matrix IK, one needs r2 restrictions 
to restrict II< = Ir. (The maximum of the likelihood function under rank (II) = r is invariant to 
the choice of lK.) A convenient form for the identification of {3 is to let 

.B = 1I6 + b, (7.4) 

where Hi and b are, respectively, m x q and m x r matrices, both with known coefficients, and 
6 is a q x r matrix with unknown coefficients. For example, if one chooses the Phillips (1991) 
normalization restriction that 

(7.5) 

where ?3' is an r x (m - r) matrix with unrestricted coefficients, then H = ( O(m_r)xr> Im_r )', 
b = ( 1,., O .. (m_.» )', and 6 = (3. 

As for MD estimation, we note that conditional on {3" , and E, the ML estimator of 0. is equal 
to 

(7.6) 

where 

it = G�{3 ® 1m, (7.7) 

with Gi given by (5.4). Substituting vec ({3) = (Im®mt) vee (6)+vec (b) into (7.3), the ML estimator 
of 6 conditional on 0., " and E is equal to 

where 

s; = s, - (G; 0 a) vee (b') . (7.9) 

Therefore, one may obtain MD estimates of 0. and {3 as initial estimates for the ML iterations by 
first estimating {3 using r cross-section regressions in the elements of Wit under the normalization 
restriction (7.5), and then iterating on (7.6) and (7.8), revising the estimates of ...., and n in each 
iteration step as in Section 6. 
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The estimation of the cointegrating relations as derived above is based on the assumption that 
the time dimension of the panel, T, exceeds for a general PVAR model the latter's autoregressive 
order, p. Sometimes, however, there may not be sufficiently many time-series observations avail­
able for T to exceed p. In the event that T is less than p, one cannot consistently estimate the 
autoregressive coefficients in �i' j = 1, 2 ,  . . .  ,po A natural question to pose, however, is whether it 
would still be possible to estimate the cointegrating relations. Unfortunately, this is not the case. 
It may be verified that when T < p, then the variance-covariance matrix of the disturbances of 
the transformed model equations is unrestricted, which in turn leads to a lack of identification. 
This is perhaps most easily seen by examining identification if the true data generating process is 
a PVAR(P) with p > 1, but estimation is based on a PVAR(I). The unconditional log-likelihood 
function (5.5) then applies, except that the variance-covariance matrix E is unrestricted. 

Proposition 7.1 The PVAR(1) model (2.12) with unrestricted variance-covariance matrix E is 
not identified. 

Proof of Proposition 7.1: The unconditional log-likelihood function of the PVAR(I) model (2.12) 
with unrestricted variance-covariance matrix E is given by 

(7.10) 

where r, and Hi are given by (5.1) and (5.3), respectively, and 6 = ( /"  tjJ', a-' )" with a- = 

vech (E). Concentrating this log-likelihood function in terms of ...., and tjJ, one obtains 

where 

• Nk N N 
I (-Y,<I» = -2 In (2.) - 2 In IE (-y,<I» I - 2' 

1 N 
E (-y,<I» = N L (r; - Hi<l>) (Ti - Hi<l>l' . 

1=1 

(7.11) 

(7.12) 

The concentrated log-likelihood function, I- (-y,tjJ), does not depend on tjJ, and hence it will not 
be possible to identify tjJ from the sample observations. To see this, first note that the variance­
covariance matrix E can be written as 

(7.13) 

where 

(7.14) 
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1 = 2,3, . . .  ,T, (7.15) 

j = 2. 3  • . . .  ,T; l = j,j + l, . . . ,T, 

(7.16) 

and 

N 
Wjl = N-1 L (6Wij - ,,) (6Wil - ,,)' , j = 1. 2  . . . . . T; l = 1, 2 ,  . . . • T. 

';=1 
I:: may now be factorized as 

E b, <1» = IL (<1» T b) IL (<1» ' ,  

where 

T b) = 

(
::: :: 
WTl WT2 

"'13 

"'

I
T 1 . "'err 

"'TT 

"'23 

and ( 1m 1 -� I 0 
L(<I» = 

m 
• • • 

o -Il> 1m. 

Note that IL(cP) 1 = 1, and IT h)1 is a function of l' only. Therefore, 

IEb,<I» 1 = 11L(<I» I IT b)1 PL(<I» ' I  = ITb)l , 
and 

which does not depend on cP . •  

8 Hypothesis Testing 

, 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

(7.21) 

(7.22) 

In this section we consider the issue of hypothesis testing for the PVAR(l) model (2.12). The 

time-series properties of W .. t that are of interest. for instance, whether Wit is (trend) stationary 

or 1(1), and whether Wit - � - -yt, if 1(1), contains cointegrating relations, can be formulated in 
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terms of restrictions on �. Since the ML estimator of cp is asymptotically normally distributed 

irrespective of whether the elements of Wit are 1(1) or 1(0), standard testing procedures such as the 

likelihood ratio, the Wald and the Lagrange multiplier methods can be applied. 

In order to carry out cointegration analysis and be ablt! to interpret the rank of the matrix 

IT = - (1m - cp) as the number of linearly independent cointegrating relations, it is necessary to 

know whether each of the variables in Wit follows an 1(1) process. Our framework can be easily 

adapted to test for unit roots in short panel univariate autoregressive models, namely m = 1. In 

this case, for p = 1 we have that (see (2.12)) 

i id 2 <it - (O,u ) ,  

where Wit is now a scalar variable, i = 1,2,  . . .  ,N.27 For testing the unit root hypothesis 

VS. 

the log-likelihood function is given by (see (5.5)) 

NT N 1 N ' l 
1 (6,) = -2 In (2�) - -Z ln IEI - 2 L (f; - g;¢) E- (� - g;¢) , 

i=1 

where 81 = ( "I, </J, 0'2 r 
fi = vee ( �Wi1 - j, 6Wi2 - ,,/, 6Wi3 - "I, . . . , 6WiT - j ) , 

gi = vee ( 0, 6Wil -j, 6Wi2 - j, . . . , 6Wi,T_1 - j ) , 

and 

2/ (1 + ¢) -1 

-1 2 -1 0 
I: = 0'2 

0 -1 2 -1 

-1 2 

Under Ho we have 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

N 
1 (60) = -�T In (2�) - � In IE,"�d - � L (f; - g;)' (EI.�, )-I (f; - g;) ,  (8.7) 

i=1 
27 As for unit root testing in the time-series context, the appropriate order of augmentation of Wit is important for 

the validity of the test. In practice one may therefore need to consider higher-order cases as well. Here we confine 

ourselves to p = I for simplicity. 
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where 80 = ( ,. (J2 y. Denoting by LV' the maximum of the log-likelihood under HI, and 

by LLr the maximum of the log-likelihood under Ho, 2 (LLU - LLr) is asymptotically chi-square 

distributed with one degree of freedom.2s A Wald type statistic of testing Ho versus HI will be 

4' - 1  
t. = se(4') ' 

(8.8) 

where see¢) denotes the standard error of �; t4J is asymptotically distributed as a standard normal 

variate, and it can thus be taken into account that the alternative hypothesis, HI, is one-sided. 

In contrast to the Least Squares Dummy Variables based unit root test for dynamic panel 

data models with finite time dimension proposed by Harris and Tzavalis (1999), note that the unit 

root test statistics we propose here are not based on an inconsistent estimator, and thus standard 

chi-square arid normal distribution theory are applicable. It may also be noted that the tests we 
propose here are readily extended to the case where, p > 1 ,  whereas such an extension for the 

unit root test proposed by Harris and Tzavalis (1999) would require computing the necessary bias 

adjustments for the test statistics for each value of p separately.29 

The natural next step is to test for cointegration. Consider again the PVAR(I) model (2.12) 

in the m variables Wit, now assumed to be I(l}. The hypothesis that Wit - lLi - ,t is cointegrated 

with rank r versus rank r + 1, r :::; 0,1, . . .  ,m - 1, can be formulated as 

vs. (8.9) 

where Qr and !3r are m x r matrices of full column rank r. As discussed in Section 7, to achieve 

identification of !3r one may employ the Phillips (1991) normalization restriction (7.5), 

-, 
where !3r is an r x (m - r) matrix with unrestricted coefficients. The likelihood ratio test statistic of 

Hr versus Hr+1 is asymptotically chi-square distributed with (m - r)2_(m_r_ l)2 = 2 (m - r)- 1  
degrees of freedom. (ImpOSing II to be of rank r leaves m2 - (m - r)2 unrestricted coefficients in 

n.)30 

21 A drawback of the likelihood ratio test is that it does not allow one to readily take into account that the alternative 

hypothesis, HI. is one-sided. 
29For panel unit root tests under p = 1 where the deterministic trend coefficients are allowed to differ across cross­

sectional wlits, see, for example, lm, Pesaran, and Shin (1997) and Harris and Tzavalis (1999). As noted in Footnote 

4, differential detenninistic trend coefficients could be accommodated in our setting also. For panel unit roots tests 

when the time dimension is large and possible slope heterogeneity can be allowed for, see, for example, Levin and 

Lin (1993) and 1m, Pesaran, and Shin (1997). 
30 Note that in the special case where m = 1 and r ""' 0, (8.9) reduces to the likelihood ratio based unit root test 

discussed above. 
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Additional parameter restrictions or overidentifying restrictions can be formulated in terms of 

vee (�) = G" + f, (8.10) 

where G is an m'2 x q matrix and f an m2 x 1 vector, both with known elements, and x is a 

q x 1 vector of free parameters. A likelihood ratio test of (8.10) will be asymptotically chi-square 

distributed with m2 - q degrees of freedom. 

9 Conditional Inference 

In applied economic problems the focus of the analysis is often on conditional models where a 

subset of the variables in Wit are modelled in terms of the remaining variables. In this section we 

consider the conditions under which such an analysis is valid for the PVAR(l) model (2.12), and 

show how the methodology developed in the previous sections can be adapted to the analysis of 

conditional PVAR models. 

In the time-series context, where the sample sizes typically are large, the conditions under which 

the marginal distribution of Xt can be ignored when estimating parameters of interest that enter the 

conditional distribution of Yt given Xt are discussed in detail, for example, by Engle, Hendry, and 

Richard (�983). These conditions are, however, obtained for given initial values, Wo = ( Yo, Xo )'. 

As should be clear from our earlier discussion, in the context of dynamic panel data models with 

small T the effect of the initial values, WiO, cannot be ignored and unless appropriately accounted 

for will make the exogeneity analysis subject to an incidental parameters problem. To formulate 

an appropriate notion of conditioning (exogeneity) for the PVAR(l) model (2.12), we consider the 

transformed version of this model which is free of the incidental parameters problem. For this 

purpose we work with the following system of equations: for the initial observations we have (see 

(4.1)) 
i = 1,2,  . . . ,N, 

and for the subsequent periods, t = 2,3, . . .  ,T, we have (see (4.3» 

i = I, 2, . . .  , N. 

Partitioning 6Wit into 6Wit = ( 6Yit .D.xit r, where Yit is my x 1 and Xit is m:z: x 1, and "7 + 
m% = m, it is of interest to determine under what conditions knowledge of the marginal probability 

distribution function of 6xit, f [6Xd11\.2 (6)], t = 1,2, . . .  ,T; i = 1,2,  . . .  , N, is redundant for 

purposes of inference regarding the parameters of interest of the conditional probability distribution 

function of 6Yit given 6xit, J [6YilI6x';t, 1\.1 (6)J, t = 1,2, . . .  , T; i = 1 , 2, . . .  , N. In other words, 

for purposes of maximizing 

(9.1) 
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with respect to 1(1 (9), under what conditions is it sufficient to consider 

(9.2) 

where It,t-l = (6wi,t_1> 6wi,t_2, . . .  , 6wn)· 
Partitioning the disturbance vector €it and its variance-covariance matrix n conformably with 

the partition of 6Wit into 6Yit and 6xit as ( . . , ) €it = $'t , 
Erit 

and 

one may write €yit conditionally in terms of erit as 

(9.3) 

where 

(9.4) 

'w 
and Vit � (om", f!v) , with 

(9.5) 

Note that Vit is independent of erit across i and over t, i = 1,2, . . .  , N; t � T. Substituting (9.3) 

into the error correction representation (2.10) under p = 1 yields ( 6y" -B,6X;, ) � ( a, ) + ( II, -B,II% ) {',<-l + ( V'� ) , (9.6) 
6Xjt Ir II% €%It 

i = 1,2,  . . .  , N; t = 1,2, . . .  ,T, where 

(9.7) 

and where we have partitioned II = ( �, � )  I and -, = ( i"�. i"r ) I conformably with the 

partition of Wit into Yit and Xit. To examine under what conditions the last mr equations in 

(9.6) are redundant for purposes of inference regarding the parameters of interest in the first ffitI 
equations in (9.6), let us write these equations separately for t = 1 and t = 2,3, . . .  ,T. For t = 1 
we have the conditional model for 6Yi1 given 6Xil and the marginal model for 6xjl, 

(9.8) 

and 

(9.9) 
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For t = 2,3, . . .  ,T we take first differences of (9.6) to obtain the conditional model for b.2Yit given 
b.2Xit and b.Wi,t_l, and the marginal model for b.2Xit given b.Wi,t_l, 

(9.10) 

(9.11) 

t = 2,3, . . .  ,T, i = 1,2,  . . .  , N. 

From (9.10) it is clear that for t = 2,3, . . . ,T, b.2x.;t in (9.10) is long-run forcing if II:!' = 
Om2xm.31 Under this restriction, the information in (9.11) is redundant for purposes of inference 

regarding the parameters of interest in (9.10), namely the long-run coefficients in 1111 and the 

short-run coefficients in BII. As for t = 1, note from (9.8) and (9.9) that under II:!, = Omzxm, 
b.Yil - BII b. Xii -8.y is independent of b.xil -"Y�, and we have that 

where 

(9.12) 

with 

Z, = {3' (f �n�') {3, 
,.0 

(9.13) 

and rIll = Oy{3', Oy being of dimension my x r, and /3 as before being an m x r matrix of full column 

rank, r = 1,2, . . . , m  - 1. Note that the r (r + 1) /2 distinct parameters in Zv are unconstrained. 

In the special case of a PVAR(l) with unit roots but no cointegrating relations where �n= Imy 
and 1l>1I:!'= Om\lxmZ '  Zy = Omll, and �1I11 becomes equal to 0",. The marginal distribution of b.Xil is 

redundant for inference on the coefficients in nil and BII.32 We have thus established that under 

II:!, = Dmz Xm efficient inference on the coefficients in IIII and BII may be carried out by maximizing 

the conditional likelihood function associated with (9.8) and (9.10). Note that the panel long-run 

forcing restriction IT:!' = Om. xm does not preclude feedbacks from Yit onto Xit in the short run. 
While in the set-up of (9.6) the panel long-run forcing restriction imposes the constraint that there 

31See, for example, Granger and Lin (1995) and Pesaran, Shin, and Smith (2000) for a further discussion of the 
long-run forcing restriction in a t ime-series context. 

nIl the intercept term 'II was also of interest, it could be consistently (though in general not efficiently) estimated 
even if it was not identified from (9.8) and (9.10) by first obtaining an estimate of "/,, from (9.9) and/or (9.11), and 
then retrieving an estimate of "/'1/ from 
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are no cointegrating relations among the 1(1) forcing variables Xit - J..Lri -/%t, it is clear that similar 
arguments as given above could be advanced. regarding conditional inference in the case where �Xit 
is a trend-stationary process with homogeneous slope coefficients.33 

To derive the likelihood function associated with (9.8) and (9.10), note that 

and that 

Cov [(� - Byll%} {io + V.'1 , �VitJ = Omll, 

for t = 3,4, . . . ,T. The conditional likelihood function associated with (9.8) and (9.10) is given by 

where 

Coy = -lIy;, and 

E,, = 

N II (2�}-'/' IE.I-'/' exp (-�wi'E;lw;) , 
1=1 

( 6Y,l -B .6.xil -� 1 t::.'y" - B,t::.'x�, - n,t::.w,1 - c" 

t::.'Y,T - B,t::.'X.T'- n,t::.W.,T_I - c" , 

'Ii" -no 

-il. 2n. -il. 0 

0 -no 2n. -no 

-il. 2n. 

The ML estimator of (9.14) is equivalent to finding ay, cy, JIll' By. Zv. and D" to maximize 

N 
1 (8) = _ �k In (2�} _ � lnIE.I - � Lwi'E;'w;, 

i=l 

(9.14) 

(9.15) 

(9.16) 

(9.17) 

where 9 = ( �, c�, 1r�. b�, J�. U",, )', with 1fti' = vee (IIv)' bv = vee (By), Jv = vech (ZlI)' 
and u" = vech (D,,).34 The likelihood function (9.17) is well defined and depends on a fixed number 
of parameters. 

33See Hsiao, Pesaran, and Tahmisciog!u (1999) for a discussion of this in the case where mil = ma" = l. 
3�In the case where mil � m,.' '''11 and j� may be identified from (9.17), and (J becomes 
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Tests of cointegration rank or other hypotheses of interest on elements of �n and �1I'" can be 

carried out in rather similar fashion as described for unconditional PVARs in Section 8. Presuming 

that there are no cointegrating relations among Xi! - JJ.,.,i - 'Y,.,t, the hypothesis that Wit - JJ., - -yt 
is cointegrated with rank r versus rank r + 1, r = 0,1 ,  . . .  ,m - 1, can be formulated as 

vs. (9.18) 

The likelihood ratio test statistic of Hr versus Hr+1 is asymptotically chi·square distributed with 

my +m -r degrees of freedom. (Imposing TIll to be of rank r, there are (my + m) r _ r2 unrestricted 

coefficients in TIll' and r (r + 1) /2 unrestricted coefficients in .zy.) Identification of f3r may be 

achieved as discussed in Sections 7 and 8. 
To test the long·run forcing restriction, one will, of course, need to consider the marginal 

likelihood function associated with (9.9) and (9.11). 

10 Finite Sample Evidence 

In this section we provide evidence on the finite sample properties of the GMM, the MD, and the 

ML estimators. This analysis is necessarily limited in scope and is intended as an illustration of the 

type of finite sample results that can be obtained rather than a comprehensive study. Nevertheless, 

we conjecture that our conclusions are likely to be of more general validity. 

10.1 Monte Carlo Design 

We consider four designs (experiments) 'in our Monte Carlo study. Common to all designs we set 

m = 2, p = 1, ..., = ( 0.02, 0.02 ) ' ,  N = (50,250), T = (3,10), and use 1 ,000 replications. As 

a partial analysis of the robustness of the ML estimator to the normality assumption, we consider 

two schemes for generating the error terms: 

(10.1) 

and 

(10.2) 

where P is the (upper triangular) Cholesky factor of fl, <lit'; '2 N (0, 1), l = 1,2,  j = 1,2,  . . . ,m, 
with 'litj being independent for alI t and j. For all experiments the fixed effects are generated as: 

i = 1,2, . . .  , N, (10.3) 
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where 

N 
1,2, . . .  ' 2' 
N N 2 + 1' 2 + 2, , , . ,N, (10.4) 

with Va = ( 0.25, 0.25 ) I , V2t = ( 0.5, 0.5 )'
, the two diagonal elements of the Cholesky 

factor Pit of 1:;1 being generated as chi·square variates with one degree of freedom, and the upper 

triangular element of Pir being generated as minus one plus a chi·square variate with one degree of 

freedom, all chi·square variates being independent for each given i, as well as independent across 
i, i = 1 , 2, . . .  ,N. 

The four designs distinguish between trend·stationary, pure unit root, and cointegrated PVAR 

models. For all designs the wwprocess is generated using (2.26), assuming that <. and the eit'S 

follow the same distribution function. 

To give an indication of the degree of fit of the various designs, below we also report (where 

appropriate) the population R2 values associated with each design. 

Design 1: fund-stationary first·order PVAR with maximum eigenvalue of If? equal to 0.6 

� = 
( 0.4 0.2 )

, 0.2 0.4 
n = ( 0.1 om ) . 

0.01 0.1 

The other eigenvalue of W is 0.2, and the population R2 values are given by R�WH' = R�W2H = 
0.2471, where 

1 - Var ([).wlitl [). Wi,t_l )  
Var(.D.wlitl 

1 - [n]" 
[L:��;n(�;)'l" ' 1

=
1,2, 

with [S]II denoting the element in the l·th row and l·th column of S. 

Design 2: fund-stationary first-orner PVAR with maximum eigenvalue of w equal to 0.8 

� - , 
_ ( 0.6 0.2 ) 

0.2 0.6 
n = ( 0.1 -0.08 )

. 
-0.08 0.1 

(10.5) 

The other eigenvalue of W is 0.4, and the population R2 values are given by R�Wh' = R�""'iI 
0.2588, where R�wli" I = 1,2, are computed as in (10.5). 

Design 3: First·order PVAR with unit roots (but non-cointegrated) 

� = ( 1 0 ) 
o 1 ' 

n = ( 0.1 

0.01 
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Design 4: COintegrated first-order PVAR 

� = ( 0.4 0.6 )
. -0.2 1.2 

o = ( 0.06 0.02 )
. 

0.02 0.01 

The eigenvalues of � in this case are given by 1 and 0.6, and the implied vectors/matrices cr, {j, 
and II are given by 

a 
= 
( -0.6 ) 

-0.2 ' 
Il = ( -0.6 0.6 )

. 
-0.2 0.2 

The population R2 values are given by R�lI111 = 0.2195 and R�V2il = 0.1579, where 

R�lIlil = 1 - Var (.6.Ylitlwi,t_I} 
Var (.6.Ylit) 

1 - 10j" [E;oc1nc,)11 
with Co = 1m, Cl = - (I.n - CIl), and Cj = Cj_l�' j = 2, 3, . 

I = 1,2, 

" 

(10.6) 

In what follows we compare the conventional GMM, the MD, and the ML estimators of the 
various parameters in terms of their biases and root mean square errors (RMSEs). The finite sample 

performance of a number of tests based on the conventional GMM and the ML estimators is also 

investigated,36 as is the possibility of employing extended GMM estimation. For Designs 1-3 the 

various estimators are computed with II unrestricted, and for Design 4 the MD and ML estimators 

are computed both with and without imposing rank restrictions on II. 

The various estimators and their variance-covariance matrices are computed as follows: The 

conventional GMM estimator not incorporating the initial conditions (in the tables denoted by 

' GMMa') is obtained by minimizing (4.15) via feasible Generalized Least Squares iterations em­

ploying factorizations similar to the ones discussed in Section 6.1, with n in (4.16) replaced by 
T N 

fi = 2N (� - I) L L  [6W;, - 'i - � (6w;,'_1 - 'ill [6w;o - 'i  - � (6w;H - 'i)j' .  
,;, ;;1 (10.7) 

The variance-covariance matrix of the resulting conventional GMM estimator of � is computed 
using 

(10.8) 

USee Pesaran, Shi.D, and Smith (2000) for a discussion of the computation of R?- values for cointegrated VARs. 
36 As we had discussed in Section 6, derivation of the asymptotic variance-covariance matrix of the MO estimator 

is not a trivial task, and is not pwsued in this paper. We thus confine owselves to reporting bias and RMSE for the 

MD estimator. 
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where Q. = ( 0{mT/2+1)(T-l)(1 Qi ) , Qi is given by (4.12), and replacing '"Y by ::y, and E by 

E. The conventional GMM estimator incorporating the initial conditions (in the tables denoted 

by ' GMMb') is computed by minimizing (4.30). The extended GMM estimator is obtained by 

solving (4.57). Initial estimates of '1, �, and n needed to initialize the computation of the various 

GMM estimators are obtained using (6.8), (6.10), and (6.11), respectively.37 The MD estimator is 

computed using Steps 1-4 as described in Section 6.1. (Under rank restrictions on n, we use (7.6) 

and (7.8) to estimate �.) The ML estimator is computed by maximizing the log-likelihood function 

(5.5). As initial estimates for the ML algorithm we use the MD estimates. The variance-covariance 

matrix of the ML estimator of � is computed using the Hessian matrix evaluated at the estimates 

in the final iteration. The numerical optimization routine used for computation of the conventional 

GMM estimator incorporating the initial conditions, of the extended GMM estimator, ac.d of the 

ML estimator employs a trust region method based algorithm, and is descnbed in some detail in a 

note available from the authors upon request. 

10.2 Monte Carlo Evidence 

We begin by discussing the Monte Carlo evidence under normality of the error terms, as summarized 

in Tables 1-8. Tables 1 and 2 present the biases and RMSEs of the conventional GMM estimator 

(not incorporating the initial conditions) ,  and the MD and ML estimators of'"Y and � for different 

values ofT and N under Designs 1_3.38 Table 2 demonstrates that in the trend-stationary case with 

maximum eigenvalue of � equal to 0.6 (Design 1), the biases and RMSEs of the conventional GMM, 

MD, and ML estimators all behave reasonably well for relatively large N and moderately sized T 
(namely, N = 250 and T = 10). But even in this case the MD and ML estimators dominate the 

conventional GMM estimator, both in terms of bias and RMSE. As to be expected, the differences 

between the conventional GMM estimator and the ML and MD estimators in the trend-stationary 

cases are most pronounced for smaller values of N and/or T. For N = 50 and T = 3, for example, 

even when the maximum eigenvalue of � is as small as 0.6, the conventional GMM estimator does 

poorly, with its performance deteriorating further as the magnitude of the maximum eigenvalue of 

� increases (0.8 for Design 2). For Design 1 the performance of the conventional GMM estimator 

37For the extended CMM estimator, different initial estimates were also explored. See the discussion below. 
"In constructing Tables 1-6 we have removed across all the estimation procedures for the various cases considl!!'ed 

those (very few) replications where the ML estimation routine, due to poor initial conditions (the MD estimates) 

did not converge globally, that is, where the likelihood value at the final iteration ML estimates was lower in value 

than for a set of coefficients in the neighborhood of the true parameter values. In other words, the total number 

of replications for each case was such that after eliminating those replications where the ML estimation routine did 

not converge globally, there were 1, 000 replications left. The following experiments for this reason involved more 

than 1, 000 total replications: Design 2, N = SO, T = 3: 1,004 replications; and Design 2, N = 2SO, T = 3: 1,001 

replications. 
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improves relatively quickly with N and/or T, while the magnitudes of the biases and RMSEs 

continue to be relatively large for Design 2 when N = 250 and T = 3, and when N = 50 and 

T = 10. Table 2 also demonstrates that the conventional GMM estimator breaks down in the 

presence of a unit root; for the coefficients <Pll and <P22, both equal to unity under Design 3, the 

biases and RMSEs continue to be large even when N = 250 and T = 10. The ML and MD 

estimators, in contrast, perfonn quite wen in the trend-stationary as well as in the unit root case, 

with a slightly superior performance of the ML estimator. 

Tables 3-6 report rejection frequencies for tests involving the parameter values <Pjk, where ¢jk 

denotes the element in the j-th row and k-th column of 4>. All tests have the nominal size of 5%. 

Table 3 demonstrates that the power and size properties of tests of <PI 1 based on the conventional 

GMM estimator (not incorporating the initial conditions) are very poor, except for the case where 

the maximum eigenvalue of ell' is equal to 0.6, N = 250, and T = 10. When the maximum eigenvalue 

of 4> is equal to 0.8, tests based. on the conventional GMM estimator are highly over-sized.. For 

example, even for N = 250 and T = 10, the size of the test based. on the conventional GMM 

estimator is equal to 45.2%. Also, as expected, tests based on conventional GMM estimators break 

down altogether in the presence of unit roots. (See the third panel of Table 3.) In contrast the 

ML estimator based. tests perform remarkably well even for small N and T and irrespective of how 

close the eigenvalues of 4> are to unity. 

Tables 4-6 present test results applied. to the remaining three coefficients of 4>, namely <P12, ¢21, 

and ¢-no The conventional GMM based tests do relatively better for these coefficients (with further 

variations across these coefficients) as compared. to the tests involving ¢ll. However, the overall 

performance of the GMM based tests is still rather poor and the tests cannot be recommended. for 

N and/or T relatively small and when the maximum eigenvalue of 4> is relatively large. Overall, 

the tests based on the conventional GMM estimator are all dominated. by the ML estimator based 

tests both in terms of size and power. 39 The ML estimator based tests display (very) good size 

properties for all designs and coefficients, even when N is as small as 50, and T is as small as 3. It 

should also be noted, though, that specifically for the trend-stationary designs the power properties 

of the ML estimator based tests may not be very strong when N = 50 and T = 3. However, these 

power properties improve quickly when N and/or T is increased: when N = 50 and T = 10 and 

when N = 250 and T = 3, the power properties are very good outside the immediate neighborhood 

of the true parameter values. (There is one exception to this, namely tests involving ¢12 under 

Design 2.) 

39Power comparisons of tests are only meaningful when the tests under consideration have empirical sizes that 

are close to their nominal size. Therefore, the power of the conventional GMM and ML estimator based tests can 

be meaningfully compared in the case of experiments where N is relatively large, T is moderately sued, and the 

maximum eigenvalue of 4> is relatively small. See, for example, the results in the first panels of Tables 4 and 5 under 

N "" 250 and T =  10. 
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Table 7 reports evidence on bias, RMSEs, and power and size of hypothesis tests under Design 

4, which involves one cointegrating relation.4o The results reported in Tables 7a-7d are based on 

ML (and MD) estimates computed under the rank restriction rank (II) = 1. The results in these 

tables suggest that as under Designs 1-3, the differences between the ML and MD estimators are 

small with a slightly superior performance of the ML estimator. When N is relatively large (say, 

N = 250) and when there are a fair number of time-series observations available (say, T = 10), 

both the ML and the MD estimator perform well in terms of bias and RMSE, and the size and 

power properties of the ML estimator based parameter tests are very good. Table 7e reports the 

likelihood ratio tests (8.9) for cointegration rank.41 The results are unifonnly very good; possibly 

with the exception of the test in the case of N = 50 and T = 3 which is slightly undersized. 

Table 8 provides evidence on the relative performance of the conventional GMM estimator incor­

porating the initial conditions compared with its counterpart not incorporatiu� iuitia! conditions.42 

Using Design 1, Table 8 reveals that while the conve�tional GMM estimator incorporating the 

initial conditions has, as to be expected, lower biases and RMSEs for the coefficients in i than 

its counterpart not incorporating the initial conditions, the biases and RMSEs of the two estima­

tors are rather similar for the coefficients in �. Also, comparing Table 8a to Tables 1 and 2, the 

biases and RMSEs of the coefficients in � of the conventional GMM estimator not incorporating 

the initial conditions are little affected by whether 'outlier' replications need to be eliminated from 

the sample. This underlines the robustness of the conventional GMM estimator results reported 

in Tables 1 and 2. Tables 8b shows that the size properties of tests involving 4111 based on the 

conventional GMM estimator incorporating the initial conditions are (quite) a bit worse than those 

based on the conventional GMM estimator not incorporating the initial conditions when N = 250 

and T = 10.43 Overall, Table 8 suggests that little is to be gained from incorporating the initial 

�Oln constructing Table 7 we have removed those replications where at least ont! of the ML estimation routines 

(WIder ro.nk (rI) being constrained to be tlqual to zero or one, or It!ft unconstrained) did not convergt! globally. The 

primary reason for such non-convergence was that one of the eigenvalues of the implied <$ under rank (rI) = 1 during 

the iterations started to fall outside the unit circlt!. Our simulations tberefore involved the following number of 

replications: N = SO, T = 3: 1,274 replications; N = SO, T = 10: 1,013 replications; N = 2SO, T = 3: 1,035 

replicatiOns; and N ::: 2SO, T ::: 10: 1, Oil replications. A potential remedy to the convergence problems would be to 

employ constrained versions of tht! numerical algorithm we use to compute the estimates that enforce the restriction 

that none of the eigenvalues of '" fall outside the unit circle. However, this would likely be at the cost of decreased 

speed of computations wht!n there is convergence even without imposing constraints on the t!igenvalues of 4>. 
uWe are not aware of any GMM based tests for coinU!gration rank in dynamic panel data models wbere the time 

dimension of the panel is finite, and thus confint! ourselves to tbt! likelihood ratio tests (8.9). 
42ln constructing Table 8, we have removed across all the estimation procedures those replicatiOns where the opti­

mization routine for the conventional GMM estimator incorporating the initial conditions did not converge globally, 

that is, where the objective function value at tht! final iteration estimates was hight!r in valut! than for a set of c0-
efficients in the neighborhood of the true parameter values. The following cases for this reason involved more than 

1, 000 total replications: N = SO, T = 3: 1,050 replications; and N = 250, T = 3: 1,013 replications. 
�lSince the results for tests involving tP12, tP21 ,  and tP22 a£t! qualitatively similar to those involving IjJll in Table 
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conditions in conventional GMM estimation, unless estimation of the trend coefficients is critical. In 
fact, taking into account the size properties of tests, and taking into account that the conventional 

GMM estimator incorporating the initial conditions is computationally significantly more involved 

than its counterpart not incorporating the initial conditions, the latter estimator seems preferable, 

if conventional GMM estimation is to be carried out at all. The Monte Carlo simulations we have 

carried out also suggest that the conclusions we have drawn from Table 8 carry over to Designs 2 

and 3 as well. 

Table 9 provides some evidence on the properties of the conventional GMM estimator (not 

incorporating the initial conditions), and the MD and ML estimators when the error terms are 

drawn from {1O.2} instead of the normal distribution, (10.1). Table 9 indicates that for Design 1 

both estimators continue to perform well in small sample when the error terms are not normally 

distributed, specifically when they are drawn from (10.2). The ML estimator continues to slightly 

outperform the MD estimator in terms of bias and RMSE. Tables 9b-ge reveal that the power and 

size properties of tests based on the ML estimator remain largely unaffected by the change in the 

scheme generating the error terms, except for a couple of cases where the tests become slightly 

oversized. The Monte Carlo simulations we have carried out also suggest that the conclusions we 

have drawn from Table 9 carry over to Designs 2-4 as well. 

We have also used Monte Carlo simulations to further investigate the possibility of employ­

ing extended GMM estimation. As discussed in Section 4, the extended GMM estimator (4.57) 

involving the homoskedasticity implied moment conditions (4.50) and (4.51) is not unique. The 

Monte· Carlo simulations that we carried out illustrated the difficulties involved in choosing among 

the multiple solutions to the moment conditions {4.52} that exist in general. The final iteration 

extended GMM estimates that we obtained under the different designs were sensitive to the initial 

estimates employed. Specifically, we obtained different extended GMM estimates when the initial 

estimates were obtained using (6.S), (6.1O), and (6.11), than when the MD estimates were employed 

as initial estimates. The Monte Carlo simulations also revealed a further difficulty with extended 

GMM estimation using the homoskedasticity implied moment conditions (4.50) and (4.51): The 

variance-covariance matrix W N(K), given in (4.59), tends to have a small reciprocal condition num­

ber even for m and T as small as m = 2 and T = 3, under both N = 50 and N = 250. The values 

of AN(K) computed in the course of the iterations are thus subject to potentially large numerical 

approximation errors. In fact, for designs with m = 4 and T = 10, attempts to compute AN(K} 

broke down altogether, even when methods for the inversion of ill-conditioned matrices were em­

ployed. These difficulties were yet more accentuated for the extended GMM estimator augmenting 

the standard orthogonality conditions with the homoskedasticity and stationarity implied moment 

ab, we have omitted the tables for size and power properties of tests involving tP12, tinlo and t!>-J2. These tables are 
available from the authors upon request. 
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conditions (4.36) and (4.37) rather than the homoskedasticity implied moment conditions (4.50) 

and (4.51). For all designs and for all combinations of N and T considered the reciprocal condition 

number of W N(K) was too small to be able to compute AN(K) with any reliable degree of numer­

ical accuracy. This was true irrespective of whether the E;! matrices were heteroskedastic across i 
(as implied by (10.4» , or were restricted to be homoskedastic across i. The various difficulties just 

described with implementing extended GMM estimation appear to further strengthen the appeal 

of the ML estimator. 

11 Conclusion 

Using panel data to estimate time-series models has the virtue that one can often invoke con­

ventional central limit theorems across individuals irrespective of the time-series properties of the 

variables under consideration, in particular irrespectiv� of whether they are (trend) stationary, pure 

1(1), or 1(1) and cointegrated. However, the virtue of having a large number of cross-sectional ob­

servations available often appears to be offset by the need to introduce individual-specific effects to 

capture the unobserved heterogeneity among the cross-sectional units. Fixed effects and, when the 

time dimension of the panel is short, initial observations introduce the classical incidental parame­

ters problem into conventional likelihood based estimation and inference, which lead to a violation 

of the regularity conditions for the consistency of the conventional ML estimator. 

To overcome these problems, GMM estimation has been suggested in the literature. However, 

conventional GMM estimators based on instruments that are orthogonal to the disturbances of the 

first-differenced form of the model are'not efficient (for example, Ahn and Schmidt, 1995, Arellano 

and Baver, 1995, and Hahn, 1999) and suffer from the defect of weak instruments if one or more 

roots of the underlying PVAR model approach unity (for example, Blundell and Bond, 1998, and 

Hsiao, Pesaran and Tahmiscioglu, 1999). As we have shown in this paper, conventional GMM 

estimators of fixed effects PVARs break down completely if the underlying model contains unit 

roots, and thus also cannot be used to construct cointegration rank tests. To obtain a consistent 

GMM estimator when the data series contain unit roots the standard orthogonality conditions have 

to be augmented by further moment conditions. In this paper, we have argued that the approach 

of augmenting the standard orthogonality conditions by homoskedasticity and stationarity implied 

moment conditions for fixed effects PVARs is subject to difficulties. In particular, it may not be 

possible to derive the optimal weighting matrix for the resultant extended GMM estimators, or the 

resultant extended GMM estimators are not unique, in general. 

Given the problems with GMM estimation, we have suggested a latent variable framework for 

the analysis of fixed effects PV ARs, This framework provides a model-consistent way of formulating 

the initial observations and leads to a transformed likelihood function that no longer involves 
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incidental parameters. We have shown that the resulting ML estimator exists, is consistent, and 

is asymptotically normally distributed when the cross-sectional dimension of the panel approaches 

infinity, irrespective of whether the underlying time series are (trend) stationary, pure 1(1), or 1(1) 

and cointegrated. We have also shown how this ML estimator can be used in conditional models 

where a subset of the variables in the PVAR is modelled in terms of the remaining variables. 

Furthermore, we have proposed procedures for conducting tests for unit roots and cointegration 

rank in panels with short time dimension. We have shown that the limiting distributions of the 

test statistics follow standard chi-square and normal distributions. 

Finally, Monte Carlo studies have been carried out to compare the small sample perfonnance 

of the ML and conventional and extended GMM estimators. We have found that the conventional 

GMM estimator performs poorly even when the largest root is moderately sized only. Furthermore, 

implementation of extended GMM estimation faces difficult computational problems. The ML 

estimator and parameter hypothesis as well as cointegration tests based on it, on the other hand, 

perform remarkably well even when the sample size is small and the data are generated by (some 

type of) non-normal disturbances. 
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Appendix: Conventional GMM, ML, and MD Estimation of a p-th Order PVAR 
(p > 1) 

In this appendix we extend the formulae provided in Sections 4 to 6 for the conventional GMM, 

ML, and MD estimation of a first-order PVAR to a p-th order PVAR, p > 1. We continue to invoke 

the assumptions for the PVAR(P} model (2.1) put forward in Section 2. 

The transformed model (3.2), (3.3), and (3.9) can be written as 

where 

�Wit - "f = C (L) Eit, t = 1,2, . . . , p - l, 

,-I 
�Wip - "f  = L:f; (�Wi,p_; - "f) + nco (L) eiO + eip, 

;",1 

t = p +  l,p + 2, . . . ,T, 

, 
Wi,t_l1 . . . ) 

� = ( �l, �2, . . .  , �p ) , 

(A.l) 

(A.2) 

(A.3) 

(AA) 

(A.5) 

r;, j = 1,2,  . . .  , p  - 1, is given by (2.11), IT by (2.5), Lp denotes a p x 1 vector of ones, and, as 

defined in Section 2, C (L) = 2:�0 C;V, CO = 1m, C1 = - (1m - 4lt), C; = Ef",l Cj_l�" j 2: 2 

(with Cj = Om for j < 0), C .. (L) = 2:;:0 CjV, Co = 1m - C, C; = Cj + C;_l' j 2: 1, and 

. C = E�o Cj. 
Conventional GMM Estimation 

The first-differenced PVAR(P) model (A.3) can in stacked form be written as 

i = 1,2,  . . .  , N, where 

R, = ( Pi, '1'-1 ) , 

Al 
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�eiT ) ' , 

(A.7) 

(A.8) 



and 

(k9) 

with � given by (A.5). 

Premultiplying (A.6) by the 1m (T + p - I) /2 + II (T - p)x(T - p) block-diagonal instrumental 

variable matrix Q., 

<Ii,pH O(mp+l)x! O(mp+l)xl 
O!rn(p+l)+llxl (1i,p+2 O[m(p+l)+llxl 

<t = O[m(p+2)+1]xl O[m(p+2)+1! x 1 Qi,p+3 

o 

where qi,p+l = ( 1, Z�,P_l )' , and Ciit = ( 1, wtt_2' w:'t_3> 
2, p + 3, . . . ,T, one obtains 

the transpose of which in vectorized form becomes 

o 

(A.IO) 

�P' Z�,P_l ) ,' t = P + 

(A.ll) 

(A.12) 

where X = vee (AI) . The conventional GMM estimator of X (not incorporating initial conditions) 

is obtained by minimizing 

[t (Q, 0 1m) vec (5;) - (Q,R; o 1m»} [�t (Q, 0 1m) E (Q, o Im)f 
. [t (Q, 0 1m) vee (8:) - (Q,R; 0 1m) Xl ' (A.13) 

where E is of the same form as (4.16), 

20 -0 
-0 20 -0 o 

(A.14) 

o -0 20 -0 
-0 20 

As for the case where p = 1, the conventional GMM moment conditions underlying (A.13) may be 

augmented with additional moment conditions based on (A.I) and (A.2) to construct a conventional 

GMM estimator incorporating initial conditions. We do not go into the details here. 

A2 
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ML Estimation 

The unconditional log-likelihood function associated with (A.l), (A.2), and (A.3) is given by« 

N 
I (8) � � �k In (2K) � � In IE,I � � L)r" � H,,4>l' E;' (r" � H,,4» 

i .. 1 

N 

�� ln I EIl,1 � � L: (r" � H�4>)' Eii,' (r� � H,,4» , 
i=I 

(A.16) 

where k = mpT, 

rri = vee [ 6.Wi} - 'Y, 6.w;2 - 'Y, 
(A.17) 

(A. IS) 

(A.19) 

Tri = vee [ L�:� (6Wi,p_j - ')') , L�:� (6Wi,p_; -.')') , . . .  , 6Wil -,)" OmxI ] ' 
(A.20) 

rji = vee ( Tti' 6W"p+2 - "'Y, 6.wi,p+3 - ,)" . . . , t::.WiT - "'Y ) , (A.2l) 

Hfi = Gll,i ® 1m + G,2,i ® 05, 

G12,i = ( T.i, OmpX(T_p_l» ) ' 

��--���-------uTo derive (A.I6), we h a.ve rewritten (A.2) using (2.11) as 
1'_1 1'-1 1'-1 
L (.6.Wi.,_J - "'Y) = L <Il! L (l::..w;.p_J -"'Y) + nc' (L)£;o + €;p. 
i-o I_I j-I 

A3 
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(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.lS) 



<p = vec(4)) , (A.26) 

� is given by (A.5), Et by (3.6), Eflr by (3.11), n denotes the m x mp matrix formed by the last 

m rows of E;-l, S denotes the m x m matrix formed by the last m columns of'R, and 

8 = ( -Y, <1>', u' ) '
, 

with u = vech cn). The matrices gil I = 0,1 ,  . . .  ,p - 2, 'HI, l = 1,2 ,  . . .  ,p - 1, and III may be 

computed using numerical recursions invoking an appropriate stopping rule to replace the infinite 

sums in their definitions by finite sums. A5 E* has a block-tridiagonal structure, its determinant 

and inverse may be computed using similar formulae as given in (5.9), (5.10), and (5.11), respec­

tively. A computationally attractive alternative to the formulation (A.I6) of the unconditional 

log-likelihood function might in some cases be to factorize Pr (6Wil, .6.wi2, . . .  , .6wip) as 

We do not go into the details here. A note describing further details of the numerical algorithm 

used to compute the ML estimates is available from the authors upon request. 

MD Estimation 

Conditional on Er and Ejlr (given by (3.6) and (3.11), respectively),  the ML estimator of � (defined 

by (A.5» and of , is equivalent to the MD estimator that minimizes 

N L: fer,; - H,;<p)' E�' (r,; - H,;<p) + (r,; - H,;<p)' Eli,' (r" - H,;<P)] , 
.==1 

(A.27) 

where r.i, Hr., rti, and Hti are defined in (A.17), (A.1S), (A.21), and (A.23), respectively, and 4> is 

given by (A.26). Therefore, conditional on " Er, and �tlr ' the MD estimator of � is given by 

and, conditional on �, �., and I::t1t> the MD estimator of , is equal to 

where 

A4 
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(A.28) 

(A.29) 

(A.30) 



and 

J, = ( -III, -II', .. . , -II' Y ,  (A.31) 

A "<,p-I A "<,p-I � "<,p-I A . . .  , �Wi,p_1, £""; =0 �Wi,p_; - £""1 = 1 �! £""; =1 W,Wi,p_; ) , 

lfi = vee ( 6Wi,p+-1 - � 6 Zip, 6W;,p+2 - � 6 Zi,p+l, " 6WiT - � 6 Zj,T-l ) .  

(A.32) 

(A.33) 

Using (A.28) and (A.29), an iterative scheme similar to that discussed in Section 6 can be employed 

for the computation of the MD estimates. 

A5 

- 56 -



I" 

·./OlruJ!IS� 
poot.j!l�lIn wnw!XlII"( �1I1 ., ...... � 'JOleul!IS; ;JU&I�!a wnwlul ..... ;'1' .Oy.j, 'SUO!I!PUO) 1'!11UI lIU!I'I.IOdJOJUI IOU JOletUlts; .......... 9 18UO!IU3"U03 34.1 •• .......... 0, '.IOJJ) 3Junbs UlI� 1001 
)ljl �IOU)P .3SI'flI. 'r " -l' 'f'. JO IIWn(oo 111-, pul MOJ III-f3ljl U! IU��) 341 ", pill '{ '/ _ (',{ JO \u=;p 1(1-{3111 U .. JO 3nIIlAU3'i1!) WRW!IIW 3111 53\OU3P -r '{roJ} WOJJ 
�IDWJ.! .... p!R '«('01) WOJJ ��3�1I.! W:ll34'" � _ (�-'11-� ... ){� -(I)Aq u3A!III, 1i53:oo:ud 1I11!IIUOILJ:IiI 'lIP � TOI UO!»>5 NS 'ui!1i3PO[� 31110W �IjO lil!'� 10:1, 

9£lO'O S900'O 
L£lO'O ..... 
Lawo .50)'0 

srao'o L600'O 
L£8(I"O roIO'O 

6UO'( 86Z6'0 

""" nllll 

O'T 

...... ""'. 
... to·O tuxro 

�(60'0 L(tO-O 

H'I"O (Q(l(ro-

ouro LlOO-o-
ZI'X-O lnro 

,,'" '''Ill 

,., 

LISO'O lLOO'O 
HSO'O ""''' 
6t1"1"O 391l"0 

£051'0 zaoo-o 
L09ro MIO'O 
15,,'0 . 5£1£'0 

"'" "'1(1 

... 

,� 

flrO'1) lIlXro 
�llO'O llOYD 
KOI'O """'. 

E9iI)'O LOO(ro-

sn(ro £o)(ro-

,n5'O 881"ro-

as'" nlllI 

• 

9901'0 IlIO'O 
UO.-o MIO-O 
90('0 't6t"0 

01(('0 1")(0"0 

(ti("O LltO·O 

I 

"'" ",,,. 

3SMI ""Ill 

, l'II 

SHiro two'O 
£61'0'0 t(OO-O 

6180'0 (8(0'0 

9HI'0 5500'0 

L91:1"0 lBOO'O 
L66('O 08lro 

I 
3SWII W!II 

l'II 

,� ____ -__ I ___ , 

lHO'O SlOO'o-UtO'O "" .. MIO'O ZOIIO'O ISIO'O 
IHO'I) SI00'o-6110'O L5OO'O 6(10'0 (000'0 HIO'O 
6101'0 6100'0-n(wo •• 6(,0 £610'0 lOOlYO 1610-0 

.... .. fH)()'(I-•• ao·o {flO'O £9<:0'0 ""' .. mo'o 

Z.,gO'O tlOO'()-8S"8()'O OtIO-O {S'{O'O {ooo·o-,ao'o 
6££5'0 £5£0'0-£190'1 (0(6'0 6LL('O �OO'O-

I 
s'Xro 

as", �" 

I 
,,'" �" :JSWII '''111 as'" 

, 1fT ,.. 

ttw'O Of 00'0-

I-a 

U(O-O (11)0'0 0000. nOll-o 
19W-0 ""'. ..... mo'o ZI1)O'O 0000 · • ..... 

�O'O L£ZO-o-(!0("0 9SLl'0 ..., .. (1XHl-0 0110-0 

I$LO'O 950(1"0-t U61"0 t9(O'O "'10'0 1000'0-LUO-O 

61SO"O 'LOO-o-

I 

, ... z»em t'IO'O 1000 '0-IBlO-O 
65'("0 S9£0'0-69Z0'1 5S6l"0 OILZ"O ZroD'o-II'Z'O 

as", �" ,,'" '''111 is'" "'III is'" 

I 
I 

l'II ,., ,.. 

I OLtO·O 0100'0-IZ�O'O (LOO-O ..... 1000'0 _. 

96tO-O ..,.� mo'o .... "", .. 0000·. _. 

ZOSO'O 65(0"0 'X(]'O 391.-0 i 8100'0 zooo·o """. 

suro LIOO'O 1»1'0 ZOIO'O /9ZW'0 SOOO·o-KW'O 

suro Lrol)"O ISH'O 9tZO'O aw'o ... � 
I ���-� IIIWO 6£11'0 8t06'·0 Ot(ro \ LOSTO ,zo(ro 

:IS/VII '''Ill is'" "'1(1 
I 

'"'' '''1(1 I is'" 

I ! l'II .. 
! 

,.. 
, 
I 

'. '. , " 

Ofi�N 
HVi\ PUBd JO SJOJBtu!IS3 ;)A!JBUJal(V jO 3SWH pUB SBIB 

.1 alqB� 

SOOIYo-'" 
L(lO(l"o-an 
1000'0 'WHO "" 

"""' .. 'n 
{OOO'O an 
5WO'0 'fffff) ,., 

�, 

,.. """"'" (I-'"'-I'J//YM 
IWIIII�nU�J 

0000' '" 
(000'0-an 
£000-0 'ffW!) "" 

OIlX)"O '" 
1100"0 a� 
ILOO-o-'Wff!) '" 

""Ill 

(1'(1,,'"'-1') IIYM ,.. -�"II(I!/f1IS-""� 

(000-0 ,� 
zooel"o a� 
5000'0 'ffW!J "" 

1000'0 ,w 
""",. an 
'LOO-O '/Yff !J '" 

"'III 

,.. """"" (,'0-'"'-1') IIYM 
�"W}II"IS-pt;aU 

" '''''''''II1:J 

.... '" 
I 



'" 00 
I 

TrDId-Slaliotla". 
Pfld (.1.--0.6) 

,., 

,." 

T",.IId.sla/i""al')' 
PYAR (.I.-_Q.8) 

,., 

,." 

Pr.,� U�il Baal 
PYAR(A..-J) 

,., 

,." 

Est' ... allN 

-

GMM. 
MD 
ML 

GMM. 
MD 
ML 

""""" 

GMM. 
MD 
ML 

GMM. 
MD 
ML 

--

GMM. 

MD 
ML 

GMM. 
MD 

ML 

n 

'"" 

Dial 

0.0269 
.(l.OOOS 
...... 

.(l,oool 
0.0000 

•. 0000 

Ml 

,,� 

0.0744 
.(l.0007 
..... 

.(l.OOO2 
•. 0000 
•. 0000 

ill 

Dia. 

.(l.00)9 
0,0000 
0,0000 

0.0002 
0.0003 
0.0002 

Table 2
1 

Bias aDd RMSE or Alternative Estimators or Panel VAR 

N � 250 

RMS!' 

0,1011 
0.0100 
0,0101 

0.00« 
0.0028 
0."" 

RMSE 

l.lOU 
0,012) 
0.0125 

0.'" I 0._ 
0.0041 I 

I 
RMSE 1 
o.om I 0.0119 
O,OI1S 

0"''' 

I 
0 .... 
0.0010 

n 

.., 

Bla. 

0.0300 
0."" 
0 .".  

0.0000 
0,0001 
0.0001 

Ml 

... 

0.0227 
O.OOOl 
0.000) 

.(1.0001 
0.0001 
0.0000 

"" 

Bla. 

0.0002 
0.0003 
0."" 

0.0000 
.(1.0001 
.(1.0001 

RMS£ I 0.91l9 
0.0100 I 0.0102 

0,0042 
0,0019 
0.0019 

""SE 
0.5933 
0,_ 
0.0067 

0.0032 
0.0019 
0.0019 

"''' I 0.060.1 
Omtl 
0.0126 

0.0091 
0._ 
0.0069 

8iIU 
0.1170 
0.0056 
0,0027 

o.om 
0.0014 
0.1)014 

Bia' 

0,01989 
omos 
0,0019 

0.111<1 
0.002' 
0.0024 

Bia, 

0.945-4 
0._ 
""" 
0.39S1 
0 .... 
0 .... 

•• 

Il.! 
RJ,ISE i 

I 
0.2S21 I 
o.ono i 
0,0698 ! 

O.04!lO I 
0.0242 I 
0.0221 I 

M 

RMSE 1 
1.0 

0.7402 I' 0,0939 
0.Ga93 

0.1)71 I 
0.0210 I 0.02S:5 

I 

RMS£ I 
L0747 I O,OlSl 
0.0381 I 0.4087 
0.009.1 I 0.009.1 

•• 

Dia. 

0.0646 
0.0014 
0.0010 

0.0127 
'.0000 

..... 

'w 

.a.000) 
.0.0014 
.(1.0007 

.(1.0075 
.(1.0002 
.... 

Bias 

0.0230 
o.oem 
0.0012 

0.0020 
0.0003 
0.(00) 

IU 

IU 

RAISE 

0.2m 
0.0577 
0.0539 

0.0311 
0.0212 
0.0205 

"''' 

0._ 
0,0362 
0.0)40 

0.0.)40 
0.0109 
0.0106 

"'" 

0.5-455 
0.0)7) 
0.0371 

0.1017 
0.0095 
0.0095 

: See Ihe foolnole 10 nblc 1 for a ducriplion oflhc dala generaling proccu and Ihe nOlalion used in this lab Ie. 

T2 

•• 

,,� 

0.0695 
0.0005 
0.0005 

0.0126 
.(l.0010 
.(l.001l 

BiM 

0.S7SI 
0.007. 
0.0056 

0.1389 
.a.OOOl 
.(1.0012 

Bla. 

.(1.0100 
.(1,0010 
.(1.0010 

.(10041 
.(I.OOOl 
.(I.oe);)) 

IU I 
"''' I 

IU 

0''''' 1 
0.0595 
0.0S60 

0.0391 I 0.0216 
O.OlOS 

I 
"''' 

0.9576 
0.1425 
OJ41) 

0.11$3 
0,0462 
0.0442 

"'SE 

0.5626 
0.037' 
0.0374 

0.1049 
00098 
""'" 

• • 

Dia. 

o.IGaI 
0.0057 
0 00«  

0.0336 
0.0019 
0.0021 

,"" 
0.0543 
o.oem 

0.0030 

0.0088 
00012 
0,0014 

Bia. 

0.9795 
0.(0)2 
0.0030 

OJ939 
0.0007 
0 .... 

'" 

'" 

1.0 

RM" 

0.2299 
0.0740 
0."" 

0.0492 
0.02-44 
0.0219 

"'SE 
0.4.4.1 
0.06% 
0.0675 

0.0510 
0.0212 
0.0206 

"''' 

1.0941 
0.0)70 
0.0369 

0.4068 
0.0097 
0."" 



Table 33 

Size and Power Properties of Tests for 1,611 

Trend-SttUonary Ptnel VAR with � - o..t 
�1i"uIlM ." -0.2 -0.1 -0. 4 . ., ,-0.6 -1J . l 

N-JIJ. 1"-l GMM. 0"'" O.ll!l(l 0.1860 O.H% 0. )410 0.447(l 0.S61O 
"< 0.�220 0.1130 0.0670 0.0470 0.1200 0..)260 0.S8OO 

N-JIJ. ""/0 GMM. 0."'" 0.26)0 0.0750 OAllO 0._ 0._ '.0000 
"< '.0000 0._ 0.4540 0.0460 0.S480 0.9830 '.0000 

N-2JO. T-J GMM, 0.1510 0.1010 0._ 0.1620 0.2840 0.4570 0.6030 

"< 0.9920 0.1270 02"0 0.""," 03-410 0.82-40 0.9810 

N-1SfJ . .,../0 I GMM. '.0000 0.9930 0.4820 0.1600 0.9560 '.0000 , .... 
"< ' 0000 ' 0000 0.9950 0.0460 0._ ' .0000 , 0000 

Trend-Slaliontry Panel VAR wilh � - 0.6' 
U,i_'M , -llJ -0.4 -0.5 -0. 6 -0.7 -u ." 

N-JO. ""3 GMM. 0.2330 0.27!l(l 0.)2% 0.)910 0.4610 0.5140 O.HIO 
"< 0.2:100 0.1130 0.0630 0.0570 0.1020 0.2110 O')TIO 

N-SfJ . .,../0 GMM. 0.1310 0.16010 0 ..... 0.8110 0."'" o.mo , .... 
"< 0.9950 0."50 0.))30 0.""" 0.4840 0.9610 , .... 

'-" N-1J(J . .,..J GMM. 0.1960 0.11% 0.2610 0.""" 0.)68<1 0.43% 0.5060 
� 

"< 0.1720 0.47lO 0.1:100 O.OSlO 0.2000 0.53!l(l 0.""" I 
N-2J(J . .,../0 GMM. 0.17.w 0.2690 0.0650 0.4520 0.9030 0.9950 '.0000 

"< '.0000 , .... 0,9630 0.0460 0.9TIO '.0000 '.0000 

Pure Unit Rool Pantl V AR with 4.. _ J6 
EJ'i_ -0. 1 ·d' ." ., -1.1 -1.1 -1.1 

N-JO, T-J GMM. 0.1410 0.4)50 0.5160 0._ 0.6880 0.7520 0.1120 

"< 0.%50 0.6320 0.2140 0.OS5O 0.2580 0.7250 0.9800 

N-lO, r,,/o GMM. 0."'" 0.6810 0.9'50 '0000 ' 0000 ' 0000 ,.." 
"< , ... '.0000 0.9120 0""'" , .... , .... ,.." 

N-]jO, T-J GMM. 0.1410 0.42% 0.5260 0 _  0.6S80 0 7640 0.8200 

"< , ... 0.9990 0.1280 0.0480 0.1960 , ... '.0000 

N-l5lJ, .,../0 GMM. 0..)140 06690 0.9'170 0._ , ... ,.." , .... 
"< , ... '.0000 ' 0000 0.0510 , .... ,.." , .." 

I See lhe footnote to Table I fOl" uk.$Cripj:ion of the dati generating po-ocess and the �ation U$ed in this table . • The ublc <q)Orts the ftaclion ofrejcctions for tests of If.' ;" .. {O.I, 0.], 0.1, 0.<1. 0.5, 0.6, 0.71. wrsus two-sided altematives.. The true .... Iue of;', is equal to 0.4. I The table reports the fraction ofrejcclioM for teslS of If.' ;,, " {O.J, 0.<1. 0.', 0.6. 0.7, 0.11, 0.91, wrsus two-sided alternatives. The true .... Iue of;" is equal to 0.6 . • The table repom the fraction ofrejcclions for tests of II�' <*" - (0.7. 0.11, 0.9, I. 1.1. 1.2. I,J). venus two· sided alternatives. The true value of,u is equal to I 

n 
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a-

CUf..,._ -.q , 
N-J(}. 1'-.J GMM, 0.12JO ML 0.6560 

N-J(}. 1'-IO I GMM, ,."'" ML ' .0000 
N-UO. 1'-) I GMM, 0.2530 ML ' .0000 
N-UO. TaIO I GMM, ' .0000 ML '.0000 

£/d..,�lf)r -.s. / 

N-JO. Tal I GMM, 0.2990 ML 0.9610 

N-J(}. 1'-/O I GMM. """' ML '.0000 
N-lUI. Tal I GMM. 0.3490 ML , .... 

N-lJD. TaID GMM, ' 0000 
M' ' .0000 

&li_1« - .0. 1 

N-JO. TaJ GMM, 0.1610 ML ,.-

N-50. 1'-10 I GMM, 0.9360 ML '.0000 

N-150. TaJ I GMM. 0.13110 ML '.0000 

N-150. Ta/O I��M. 0.9270 

' .0000 

Table 51 1  

Size and Power Properties or Tests ror tPzl 
Trend-Stltionuy Pinel VAR with A.- "  0.6u 

,., ." -0. 1 -O. J 
0._ 0.0100 0.0190 0.1l� 

0.1880 0.1400 0.06� 0.1340 

0."" 0.1890 0.1090 0.�20 

0 .... 0.�700 , ..... o,mo 

O.lJ� 0.0890 0.1170 0.21<10 

0._ 6.4120 0,0490 0.030 

'0000 0.69� 0.0770 0.8820 

'0000 0.9970 0,0500 '0000 

Trend-8tatlonary Panel VAR with "-.. " 0.81) 

, ., ,-0. / ,-0,1 -0,) 
0.2 1 10 0.15110 0.1220 0.1400 

0.7260 0.2600 0.0S40 0.2340 

0.9930 0.7J� 0.1110 0.l811O 

'0000 ,."" 0.0620 0.91<10 

0.2410 0.1900 0.1580 0.IS3O 

'''''' 0.79110 0.0510 0.7130 

'0000 0.9110 ,moo 0.8190 

''''"' ' .0000 "' .. , ' .0000 

Pure Unit Root Pinel VAR with A.- _ ,10 

,-.s.l ... , ., .. , 
0.1 160 0.0710 0.0520 0.0571) 

0 _  0.2610 0.0560 0.2271) 

0.12� OJS� 0.1460 0.34<10 

''''"' ,,,., 0.0S40 ' ''''' 

0."" 00720 0.0510 0.0700 

''''"' 0,774(1 0.0560 0.7770 

0.6940 0,]560 0.1640 0.1640 

'0000 , "'"' 0.0500 ' 0000 

II See Ihe foolnole 10 Table 1 for I deKriplioo oflhe dala generating p,oten and Ihe nOlallon used for 1hillable. 

,-0.4 ",-D.5 
0.2260 OJ)1O 

0.3790 0.61)0 

0.9290 0.99� 

0.9890 ' .0000 
0._ '''''' 
0.9�)O ' .0000 
' 0000 ' .0000 
'.0000 ' .0000 

-0.4 ,-0.5 
0.1720 0 2580 

0.6810 O,<N� 

0.<N20 o.mo 
'.0000 ' .0000 

0.2570 03571) 

0.9830 0.98� 

'.0000 ' '''"' 
' 0000 ,."'"' 

.,,, ,-0.1 

0.0910 0.13)0 

0.6700 0.<N70 

0.70)0 0.93� 

,."'"' '.0000 

0 _  0.1490 

' .0000 '.0000 

0.7120 0.9350 

' .0000 '.0000 

II The lable rc-pol1s lhe fi-Klion ofrejeelions for Its1S of HQ-' Ii, .. ('0.1. O. 0./. o.). O.J. 0.4. O.S}. versul two-sided .llemDlives. The true value or ¢l, is equal 10 0.1. 
""The: lable reportl lhe fi-al:lion ofrejeClions for lests of HQ-' f611 .. (-0.1. O. 0.1. 0.1. O.J. 0.4. O.S). versul lwo·,ided .lIemDlivu. The true value of ¢Z, is equal 10 0.1. I< The lable reports lhe fi-lclion ofrejeetions for lests of HQ-' f6" .. ,"O.J. -o_}. -0.1. O. 0.1. 0,1. O.J), versus tw'Hided allematives. The true value of ?II is equal 10 0, 
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'" N 
J 

Btl_tar -1) , 1 
N-SO.1'-) GMM, 0.0940 

M' 0.4810 

N-SI). T-jI) GMM, 0.1030 
M' '.0000 

N-lS0. 1'-) GMM, 0.16)0 

'" 0._ 

N-lS0. 1'-10 GMM, .. 0000 
'" '.0000 

lo·lfi_flN -0.1 

N-MJ, 1'-) GMM, 0,1320 

'" 0.4900 

N-SO. T·IO GMM. 0.'9SO 
'" .. 0000 

N-lJO. 1'-1 GMM. 0.2140 

'" 0.9S60 

N-lJO. 1'-IO GMM, , ..... 
M' ' .0000 

£JtI_kN .. , 
Nc;.ili. 1'-1 GMM. 0.}170 

'" 0.9250 

N-SO, T-II) GMM. 0.)480 
'" ' 0000 

N-nO. 1'-) GMM, OJS80 
M'. ' 0000 

N .. 1S0, 1'-10 GMM. 0.2970 

'" ' .0000 

Table 61S 

Size and Power Properties of Tests (or Pn 
Trend·Stalionary Panel V AR wilh A..... _ 0.616 

.. 1).1 . ,-Ill -O.f -I) . ' 
(1 1 120 0. 1530 0.1490 0.)4)0 
0,21'10 O.OUO 0.0620 0.12'10 

0.2600 0.0630 0.4381) 0.9080 
0._ 0.«70 0.05'10 0.5510 

0.0850 0,0800 OJ44/) 0.2660 
0 8230 0.2710 0,0S4/) 0.))81) 

0.9980 0.4570 0.1700 0.9650 
' 0000 0.9910 0.0520 0.9910 

Trend..slalionary Panel V AR with "-" _ 0.1111 
... -O. J "0.6 -0 , ' 

0.1 160 0.12W 0.1480 0.1170 
0.1670 0._ o.om 0.09SO 

0.,." 0.14110 0._ 1).480(1 
0._ 0.5850 0.0510 0.6170 

0.1670 0.1470 O.l4SO 0.1770 
0.7110 02 ... 0.0510 0.1110 

0 ..... 0.4340 0 .... 0.9920 
' .0000 0.9910 0.0550 ' .0000 

Pure Unit Root Panel VAR with .l.- _ /11 

- D.I ,-0.9 . . , -1./ 
0.4)70 0.5300 0.6260 0.7080 
0.6280 0.1990 0.0520 0.2480 

0.7140 0."" o.mo . .  0000 '.0000 0,9670 0,0510 "0000 
0.4500 0.5480 0,6380 0.7080 
'.0000 0.7470 0.0$40 0.8010 

0.6860 0.9480 0._ ' 0000 
, .... ' . 0000 0.0460 '.0000 

lJ See Ihe foolnOle to Table I for .  des<:ription oflhe dala gcnCnlling process and lhe nOlalion used for this table . 

... -0. ] 
0.47J.O 0.5780 
0.><>" 0.5420 

'.0000 ' .0000 
O,98SO '.0000 
(04)10 0.6OJ.O 
0,8250 0.""" 

' 0000 '.0000 
'.0000 ' .0000 

-1).8 gO. 9 
0.2370 0.2810 

0.1520 0.4960 

0.1790 0._ 

0._ , ..... 

O.22SO 02 ... 
0.1110 0.9S'1O 

0.9150 , .... 
, ..... , ..... 

-/.1 -1.1 

0.7740 0,1250 
0.7280 0._ 

'.0000 '.0000 
' .0000 '.0000 

0.7"0 0 ..... 
' .0000 '.0000 
'.0000 '.0000 
'.0000 ' .0000 

.. The lable fepoMs Ihe fraction o(rejection, for lestt of H�' '"" (O.1. 0,1. 0.3. 0.4. 0.5. 0,6, 0.7), versus two-sided altemalivu. The h'UC value of", i, equal to 0.4. 
11 The lable rcpoMs the fraction of rejections for teW of H�' '',,, (O.J. 0.4. 0.5. 0.6. 0.7. 0,8, 0.9), versus two·sided altemalives. The tll,le value of", is equal to 0.6. 11 The table rcpons the fraCliOll of,ejections for teslS of II.' " .. - (O'!. 0.8. 0.9. I. 1.1. I.], I.J), VC'ISUS two-sided allcmalivu. TIle true value of;", i, "lual to I. 
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£.Ill .... "" 

N-50. 1'-J "D '" 

N-j(}. 7-10 "D '" 

N-lJO. T-J MD '" 

N-2j(}.T-IO "D '" 

N-JO. 1'-J 

N-JO. T-/O 

N-2JO. 1'-J 

N-1JO. 7-/0 

Table 7al9 
Bias and RMSE of Alternative Estimators of Coinlegrated Panel V AR 

,.,-0_01 I 
Rial RI</SE i 
0.0003 0.0190 I 0.0003 0.0190 

Bias Rl<ISE I 
0.0003 0.0086 i 
0,0003 0.0086 ! 

Bias RMSE I 
-0.0002 0.0086 
-0.0002 0.00S6 

Hi., "''' 
.(1.0001 •. "'"" 
.0.0001 0.0030 

,.,-0.01 : ",--0.6 I 
Rial 

0.0002 
•. 000> 
Bia. 

0.0002 
0,0002 

Bi". 

.0.0001 
<.0000 
"M 
-0.0001 
.0.0001 

"''' , /1i�1 
, 

0.0082 ' 0.0362 
0.0082 I 0.0423 

'"'" I "M 
0,00]9 1 """" 
0,0039 ""'" "''' Ilia. 

0.0037 o.(Xm 
0.0031 0.0013 

"''' Hi., 

0.0024 0.0016 
0.0024 O.OOlU 

Table 7b2O 

Rl<fSE 
0.1957 i 
0.1423 i 

"'" I 
O.IOll i 
0.0632 

Rl<fSE ' 

I 
0.069l 
''')()6 1 "''' 
0.0263 

I 
0.02 1 1  

�-·0.1 i 
Bial I ':::., I 0.0019 .- 0.0281 

BI". "''' I . ... O.DIS<! 
0_0005 0.0129 

Sial RI</SE 

-0.0003 0.0155 
0.0007 o.olll 

Bi., ItMSE 

0,0003 0.0030 I 0,0002 .... , 

Size and Power Properties of Tests for O'J under Coinlegrated Panel V AR 

£.Ii_ --0. 9 /1, .. ·0. 1 .-0.1 ,,·-0. 6 ,, --0_1 ,, --0. 4 

'" •. "'" 0.1680 ..... 0,0410 0.1260 0.)290 

'" 1.0000 0.9530 0_4830 0,0630 0_5810 0.9920 

'" 0.8620 0.6&80 0.2590 .... 0.3200 0.7590 

'" '0000 '0000 •. "'" 0.0460 0.9970 . '0000 

#. .•. / 

Bial Rl<fSE 

.o,OS61 0.4625 

.0.0209 .,.., 
BI". "''' 
.(1_0220 0.2252 
-O_oon 0.1S09 

Sial RAISE 

-0.0166 0.2236 .... 0.1599 

Bi., "''' 
00035 O.04JJ 
0,0030 0.0.401 

11, ··O,J 
0.S690 

' 0000 
0.8850 

' 0000 

It Stt 1M foolnole 10 Table I for a description of the dal. gmerating process, wherc now . - Iz + a,8', wilh a - (a,. a,' and,6- (/I,.jJ:J'; aand,6.rc commonly refcm:d to as 
the error correction coemc�nts and 1M ooinlcgnting vectors, respectively. The remaining nOl&lion is as Ikscribed in Ihe foolnole 10 Table I. 
lI> The table reporu the fiw:lion ofrejectiOlll for leSIi of H.' a, - (·O.P. ·0.1. -0.7. -0.6, -0,5, -0.4. -0.11. versus two-sided aIICTnII;\'CS. The lrue value of al ;$ equal 10 ·0.6. 

n 



I 
l!: 

N-JD. T-J 

N-j(}. T-/O 

N-1j(}, T-J 
N-1JO, T-IO 

N-j(}, TaJ 
N-j(}, r-IO 

N-UO, T-J 

N-ljO, T-IO 

Table 7C21 

Size and Power Properties of Tests for ul under Cointegrated Panel V AI{ 
EYilNl_ -of. } 
." 0.9770 

'" ' 0000 
'" 0.9740 

'" ' 0000 

/;>-4J.' 
0.9760 

, ... 

0.9740 

'.0000 

,.,-_D.l 

,. .. 

'.0000 
0.9740 

'.0000 

Table 7d22 

,.,-4J.l ,.,- ·D.I .. 

0.0(10 Q.9220 0.9740 

0.0(80 , ... ' .0000 

0.0$70 0.9740 0.9740 

0.0(90 '.0000 '.0000 

Size and Power Properties of Tests for jJl under Cointegrated Panel V AR 

ur,-_1tW -_1.1 
'" 0.1]70 

'" 0.9180 

'" 0.39)0 

'" '.0000 

-·1.1 --1 . 1 - , ... , 

0.0720 0.0610 0.0670 o.ono 

0.6140 0.1940 0.0]70 0.]84(1 

0.2]80 0.1 1 1 0  0.0650 0.1270 

'.0000 0.6510 O.OSlO 0.7060 

Table 7e2) 

Size and Power Properties of CoiDtegratioD Test 

N-H. T-J 

N-JD, T-IO 

N .. 1JO, T-J 

N-lj(j. 1'-IO 

e.ri_ror 
M' 
'" 

'" 

'" 

N.",.H, II, ,,,. /I, 
, ... ,.,., 

, ... 0.0$70 

'.0000 O.OSOO 

' 0000 0.0470 

..... 

0.1090 

0.57SO 

0.2460 

0.9990 

,.,-6.1 
0."'" 

'.0000 
0.9740 

'.0000 

... , 

0,]6)0 

0.8840 

0.04280 

.. 0000 

21 The: table reports the fraction ofrejec1ions for tests of II .. ' IT, - {..{H, -0.4. ·0.3. -4.1. -0.1. o. O.I}. wmos two-sided a1ternative5. The: � ... lue of ttl is equal 10 -0.1. 
l] The: labIe reporU.he fraction ofrejec1ions for tests of 1I .. ·jI," {-I.J. -1.1. -1.1. ·1. -0.1'. ·0.1. -O.l}, venus Iwr>-Sidod .hemalrvn. The InIc value ofjl, is equalro -I. 
II The !able "'pons !he fraction of rejections for .ests of II .. · ro"i(� - ,  venus H • .,: ro"*(� .. ,+1. , .. O. I, where the !rue >WIt of nil equ.l .o I. 
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Table 8a24 
Bias and RMSE of Alternative Conventional GMM Estimators under Trend-Stationary Panel V AR witb 4 .... - 0.6 

£<ti",,",,' ",-0,01 n-fJ.01 -,,-0.4 tI,,-0.1 (1,,"0.1 (1,,-6.4 

81"$ "'"" 81a. RMSE. BiQ. "'"" 81", RMSE. 8ia. "'"" 8ia. "'"" 

N"JO. T-J OMM. �.0028 0.0572 . .... 0.05-40 0.)562 0.4'M1 I 0.1270 0.3908 Q.I.8) 0.3940 I 0.3262 0 .• 764 
GMM, �.001O 0.(1.45. ..(l.OOOI 0.0236 0.3652 0.50<) 0.1139 0.4133 0.1.9) OAOlS ! 0.])70 0 .• 848 
MD 0.000] 0.02)3 ..(l,OOO) 0.02l] 0.0257 O.I� ! 0.0043 0.1362 0.0087 0.1175 I 0.0163 0.1600 

, 
lIi41 """ Bi41 "'"" 8i41 "''' I ,,� "''' lIi41 "'" I ,,� "'" 

N .. jO. T-JO GMM. 0.0005 0.0088 0.0002 0.00II8 0.1168 0.13.56 I 0,0359 0.0802 0.0383 0.0819 0.1168 0.1l'9 
GMM, 0.0002 00066 0.0000 0 _  0.1002 0.1290 0,0218 0.0792 0,02119 0.0833 0.0991 0.\288 
MD 0,0002 00066 0.0000 0 006) I 0.0068 0.0552 . ... 0.0496 0.0032 0.0493 0.001\ 0.0555 

,,� """ 81a. RMSE. 
I 

8i,.. """ 81a, """ ,,� "'"" Rial """ 

N .. 1JI).T-J GMM. O.ooIS 0.0398 0._ 0.0391 I 0.1203 0.2537 O.o?08 0.2339 0.0732 0.221. 0.1 III 0.2288 
GMM, -o.oooJ 0.0105 0.0001 OJlI., j 0.1286 0.2536 0.0779 0.2)60 0.0711 O.HIII 0.1212 0.2291 
MD . ... 0.0100 0 ... 0.0100 t 0.OOS7 0.0752 0.0011 ,,"', 0 .... 0.0595 0.00.56 0.01].4 

,,� """ ,,� """ I ,,� "''' 8;41 """ 81". "'" 8/41 """ 

N-1JO.T-10 GMM. �,oool 0._ 0.0000 0·", 1 0.0)22 0.(»90 0.0127 0.03&1 0.0126 OOJ" I 0.0336 0.0492 
GMM, 0.0000 0.0029 0,0001 0.0029 0.0310 0.0483 0.0123 0.0380 0.0123 0.0390 0.0324 0.0484 
MD 0.0000 0.0028 

I 
0,0001 0.0029 ! 0.0014 0.0242 0.0000 0.0212 -0.0010 0.0216 0.0019 0.0244 

Table 8b2S 
Size and Power Properties of Tests for ?JJ under Trend-Stationary Panel V AR with ..l. .... - 0.6 

uti ...... .,.. -1) , 1 ,-0.2 -" -0.4 -0. 5 "0.6 ,-0.1 
N-jO. T-l GMM. 0.1070 0.1350 0.1930 0.2610 0.3450 0._ 0.55-40 

GMM, Q.l710 0.2260 0.2870 0.3690 0 ... 6\0 0,5820 0.6730 

N-j(J. T-II) I GMM, 0.7960 0.2630 O.OlSO 0.4310 09060 0.9980 ,.0000 
GMM, 0.8390 0." 80 0.1700 0.5100 0.&580 0.9110 0.9250 

N-1SD. T-J I GMM. 0.2050 0.1320 0.1200 0.1520 02'" 0 ... 210 0"'" 
GMM. 0.1850 0.2010 0.]120 0.2660 OJ". 0.5800 0.1100 

N-1JO. T-/O GMM. 1.0000 0.9930 OAI20 0.1600 0.9560 '.0000 '.0000 
GMM, , .0000 0._ 0.7100 OJ"" 0.9820 1.0000 ' 0000 

20 See Ihe footnote 10 Table I for . de$criplion ofille data Immlting process. 'OMM, denole$ 1he eonvauional CiMM estimator i�inl initial condilions. The remaininll 
notation il U described in the footnote to Table I. 
uThe table reportS the fn(fion of rejections for lesb of H.' �I '"' {D. I, 0.2. O.J, 0.4, O.J, 0.6, O.l}. � two-sided altetMfivu. The trw value of;', is equal 10 0.4. 
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Table 9a26 
Bias and RMSE of Alter-native Estlmaton under Trend-Stationary Panel V AR with A... ... - 0.6 and Non-Normal Disturbances 

£Sri"""", n"(J.Ol n-O,Ol �,,-O.l ",-0.1 ;,,-0.1 ",-D.l 

B,-tIS "'''' ,,� "'''' 8iIU RMSF: 8i", """ 8i'" """ Bi". "''' 

N-$O. 1"-J GMM. .(1.0081 0.5155 .(1.0002 0.2590 0.)716 0.5353 ! 0.1344 0 .• 174 0.1.05 0.4052 O.lOU 0.901 
MD 0.0000 0,0219 <.0000 0.0229 0.0169 0.1966 0.'"" 0.1386 0.0112 0.1lK6 . 0.0256 0,1969 
M' -0,0008 0,0221 .(1.0008 0.0230 0.0138 0.1809 I 0,001] 0.1321 0.0112 0.ln2 0.0169 0,1811 

1 
81d. "''' 81dl "''' 81d' "''' I BitU """ Bid. "''' BilU RMSE 

1 
N-jl). T-II) GMM. 0,0002 0.0089 0,(00) O.DOSS 0.1216 0.1401 i O.O)SO 0.0784 0,0353 0.0798 0.1146 0.lll6 

MD .(1.0002 0.006.> .{I.oool 0,0062 0,0101 0.0679 I 0.0016 O.DoIU 0,0017 0.0506 0._ 0._ 
M' .(1.0002 0.0066 .{I.oool 0,0063 0,0089 O.O�, 

I 
0 .... 0.DoIS9 0._ O.DoIll j 0."'" 0.054{) 

, 
,,� "''' ,,� "''' ,,� "''' Bi", fU,fS£ ,,� "''' I Bia "''' N"ljO.1"-J GMM. 0."" 0.2104 0.01 1 1  0.3238 0.0976 0.2412 0.0655 0.2346 0.0452 0.2245 0.1111 0.2.31 

MD 0.0003 0,0101 0.0001 00097 000« �:= I -O,DOH 0.0603 0.0012 0._ O.OOll 0.0928 
." 0.0001 0.0102 <.0000 0.0091 0.0024 -0.0026 0.0562 0._ 0.0S62 , <.""" 0.(8)9 

"a "''' "a "''' "a "''' Hi", "''' ... "'" ... "''' 

N-1JO.T-IO GMM. <.0000 0.0042 <.0000 0.0042 O.CI)� 0.0485 O.OIlS 0.0)93 0.0140 o.om 0.0327 0.0486 
MD .0.0001 0.0029 -0.0001 0.0021 0.0018 0.0281 0 .... 0.0221 <.000< 0.0223 .(1.0001 0.0308 
M' -0.0001 0.00» -0.0001 0.0029 

I 
0.0015 0.0219 O.OOOl 0.0209 -0,0003 0.0204 0""" 0.0240 

Table 9b27 
Size and Power Properties of Tests for PII under Trend-Stationary Panel V AR with 4 ... - 0.6 and Non-Normal Disturbances 

£Stl_UN -'u -<.., """ -0.1 -OJ -0,6 -0, 1 
N"jO, 1"-J GMM. 0.0910 0.1).4(1 0.1')40 0.2710 0.1730 0 .• 730 0.>100 

M' 0 .• 4» 0.2360 0.1260 0._ 0.2000 0.3540 0."" 
N-SO. 1"-IO GMM. 0.7740 0.2360 0.0780 D.46JO 0.9080 0.9990 1 0000 

M' 1.0000 0._ 0.4)00 O.osro 0.5620 0.91110 1.0000 
N-250. T-J I GMM. 0.1790 0.1060 0.08SO 0.1390 0.25]0 0.4010 0,5650 

M' 0._ 0.1800 0.3030 00990 0.3690 0.7800 0.%90 
N-210. 1"-10 GMM. 1.0000 0.9980 0.45SO OHOO 0.9620 1.0000 1.0000 

M' 1 .0000 1 .0000 0.9930 O.04SO 0.99]0 1.0000 1.0000 

:II; For details or the Monte Carlo design, � $t;ction 10.1. The data �nl1ing process is given by (/1 • «.) (w • •  II, • ]'f) • "tr. wheu PI il gen(rawI from (10.)), and fit is 

l\enualed from (10.2). See the foolJ1ote to Table I for a description of the I\Ob.tion uS((! in this table. 
The uble ,eports the fraction ofrejcctionl for tests of H.' ;" • (0.1. 0.1. 0.3. 0.4. 0.$. 0.6. 0.7). venus two-sided allematives. The Il'I# �I\IC of;', is equal to 0.4. 
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TabJe9c28 

Size and Power Properties o(Tests (or PI1 under Trend-Stationary Pan'el VAR with A",� z: 0.6 and Non-Normal Disturbances 

Es,'m",o, --G. I .-' -G./ -G,1 -G.J -G, # II, -O.S 
N-SfJ.1"-J OMM. 0.1400 0.(1.860 0.0670 0.l060 0.1760 0.2670 0.3800 

'" 0.6210 0.3�10 0.1220 0.0620 0.1�90 0.3910 0,6810 

N-SfJ. 1"-IO I OMM. , . ..,. 0.6890 ,.- 0.1030 0.5510 0.9330 ,.-
'" , ... ,."", ,,,.. 0.0430 ''''''' 0.9860 ' 0000 

N-1J(). T-J I OMM. 0.2910 0.1510 0.0950 0.1070 0.1820 0.J190 0.4910 
'" ,."., 0.9300 '''"' '''''' 0..4150 0.9)3(1 ' 0000 

N-ZSO, T-/O I OMM. ' .0000 , ... "'''' O.OS80 0.8850 '.0000 ' .0000 
'" ' .0000 , .0000 0.9970 0.0)50 ' ''''' , ..... , .... 

TabJe9d29 

Size and Power Properties of Tests for P21 under Trend-Stationary Panel V AR with A",� .. 0.6 and Non-Normal Disturbances 

Es'/_'or -0.1 .-' " 0. / ,-0,1 -O.J -0.# -O.S 
H-SO. 1"-J OMM, 0. 1240 0.0&80 0.0700 '''''' 0.1470 0.2240 0.3310 

'" , ..... 0.)100 0.1660 0.0670 UliO 0.3800 0.61lO 

N-SfJ. T-IO I OMM. O.97lO 0.1OlO 0.2070 0.1060 ,.,.., 0.9320 , .... 
'" , ..... , .... 0.5160 ",." 0.5830 , . ..., , .... 

N-JJI). 1'-J I GM". 0.28-40 0.1400 O.OSSO 0.1020 ,,.. O,)SSO 0.5600 
'" , ..... '0.9400 0.4510 ''''''' , . .". 0.9260 , ..... 

N-2S0. T-IO OMM. , ..... , ..... 0.6850 ' ''''' 1),8970 , ..... , .... 
'" ' 0000 0.0000 0.9980 0.0550 0.9980 '. 0000 , .... 

Table ge3O 
Size and Power Properties of Tests (or th1 under Trend-Stationary Panel V AR wltb A..u - 0.6 and Non-Normal Disturbances 

F ... ,, __ -0.1 ·-0.1 · -O, J ·-0.4 .-0,' . -0.6 .-0. 7 
N-J(). T-J GMM. 0.0950 0. 123(1 0.1920 0.2600 0.3510 ''''' 0.5720 

'" 0.4210 0.2160 0.1060 0,1 100 0.1910 0.311JO 0.5110 

N-SfJ. T-IO I GMM. 0.8160 0.2120 ''''''' 0.4l11O , ..... 0."" ' .0000 M' , .... 0._ M200 0.0000 " ... 0.9750 ' .0000 

N-ZSfJ. T-J I GMM. 0.1710 0.1050 0.1050 0.1660 02,., 0.4410 0.6110 
'" 0.9850 0.1950 0.3290 0.1100 0.)700 0.1160 0.9510 

N-1SfJ. T-IO I GMM. , .... 0.9970 0.�980 0.1690 , ..... , ..... '.0000 
'" , .... 0 .0000 0.9860 0.0630 0.9850 ' .0000 ' .0000 

II The lable tepons the fraclion ofrcjeclions for lUIS of Ha: p,! - (-O.I. O. 0.1. 0,1. 0,). 0,4. 0.$), versus two-sided ahemalives. The Ir\lC value of ¢,! is equal 10 0.1. It The lable tepons Ihe fraction ofrejcetions for lests of Ifa: Pl' - {-O,}. O. 0./. 0,1. 0,). 0,4. 0.$), vusus two-sided allematives. The Ir\le value of ¢" is equal 10 0.1. )I The lable tepons the fraction ofrejc<:lions for tests of 11,,- p..! - (O.I. 0.1. O.J. 0.4. 0.$. 0.6. 0.7). ver$US !Wet-sided ahemalive5- The true value of p..! iJ equal 10 0.4. 
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